The Synthesis of a Transmission With Intersecting Axes for Rectifying and Reducing a Periodic Speed: A Preliminary Study

Author(s):  
ChinPun Teng ◽  
Jorge Angeles ◽  
Khaled Khader

Abstract In power-transmission tasks, the mechanical designer faces sometimes the problem of transmitting a constant angular velocity from a shaft at the output of a motor to another shaft connected to the load. When the first shaft is connected to the rotor of the motor via a gear box directly, and the motor is supplied with an effective speed control system, then the problem of power transmission can be readily solved using a spur-gear train if the shafts are parallel; a bevel-gear train if the two shafts intersect; and a gear train with skew axes if the shafts are neither parallel nor intersecting. However, instances occur in practice whereby the rotor of the motor is connected to a speed reducer that does not preserve the constancy of the motor speed, e.g., when a sprocket-chain transmission is used. In these cases, the input speed is not constant, but periodic. This paper focuses on the design of a transmission mechanism that serves to rectify the periodic speed of an input shaft to deliver a constant speed to the load. Moreover, in doing this, we show that it is possible to reduce the speed delivered by the motor as well. The problem of power transmission between parallel axes was reported in an earlier paper. Here, we report work on the corresponding problem when the shafts intersect. In the two cases, a transmission based on cams is synthesised, this paper reporting on a design based on spherical cams.

2018 ◽  
Vol 175 ◽  
pp. 03006
Author(s):  
Mingxia Zhao

Taking the compound gear trains as an example, the principle of the transmission mechanism was analyzed, and the rotational speed of the key gears in the compound gear trains was calculated by using the calculation formula of transmission ratio to obtain the simulation parameters of UG movement. The gear tool box in UG was applied to complete the modeling and meshing assembly of the bevel gear and spur gear, the rotation pair and gear pair was to motion simulation, the gear transmission state could have visually observed by motion simulation, and then the chart was analyzed to verify the design rationality of the gear train.


1989 ◽  
Vol 111 (3) ◽  
pp. 337-344 ◽  
Author(s):  
J. G. Blanche ◽  
D. C. H. Yang

The cycloidal speed reducer, or cycloid drive, is an epicyclic gear train in which the profile of the planet gear is an epitrochoid and the annular sun gear has rollers as its teeth. The cycloid drive has very high efficiency and small size, in comparison with a conventional gear mechanism, making it an attractive candidate for limited space applications. On the other hand, in this type of transmissions there exist two major drawbacks, namely, backlash and torque ripple. Backlash, the angle through which the output shaft can rotate when the input shaft is held fixed, has a degrading effect on the output accuracy. Torque ripple, the variation in mechanical advantage as the input shaft rotates, causes vibrations and could lead to dynamic instability of the machinery. If the cycloid drive were manufactured to the ideal dimensions, there would be no backlash nor torque ripple. However, in reality, there will always be some machining tolerances. In this paper an analytical model is developed which models the cycloid drive with machining tolerances. Consequently, the effect of machining tolerances on backlash and torque ripple are investigated. It is found that both the backlash and the torque ripple are inherent periodic functions of the input crank angle.


Author(s):  
J. G. Blanche ◽  
D. C. H. Yang

Abstract The cycloidal speed reducer, or cycloid drive, is an epicyclic gear train in which the profile of the planet gear is an epitrochoid and the annular sun gear has rollers as its teeth. The cycloid drive has very high efficiency and small size, in comparison with a conventional gear mechanism, making it an attractive candidate for limited space applications. On the other hand, in this type of transmissions there exist two major drawbacks, namely, backlash and torque ripple Backlash, the angle through which the output shaft can rotate when the input shaft is held fixed, has a degrading effect on the output accuracy. Torque ripple, the variation in mechanical advantage as the input shaft rotates, causes vibrations and could lead to dynamic instability of the machinery. If the cycloid drive were manufactured to the ideal dimensions, there would be no backlash nor torque ripple. However, in reality, there will always be some machining tolerances. In this paper an analytical model is developed which models the cycloid drive with machining tolerances. This model is used in Part II of this investigation to determine the effect of machining tolerances on backlash and torque ripple. As a result, simple and practical equations for design synthesis of this type of drives are formulated.


2011 ◽  
Vol 52-54 ◽  
pp. 279-284 ◽  
Author(s):  
Yi Chang Wu ◽  
Shi Liang Lin

This paper presents a design approach for the conceptual design of a novel 16-speed bicycle drive hub. First, a distributed-flow type planetary gear train, which consists of two parallel- connected transmission units and one differential unit, for the power transmission mechanism of a bicycle drive hub is proposed. Based on the kinematic analysis of the presented gear mechanism, a feasible clutching sequence is synthesized to provide 16 forward speeds. Then, the numbers of teeth of all gears are determined according to the desired velocity ratio of each speed. As a result, a schematic diagram of the embodiment of the proposed 16-speed drive hub is presented.


Author(s):  
Leonard P. Pomrehn ◽  
Panos Y. Papalambros

Abstract The use of discrete variables in optimal design models offers the opportunity to deal rigorously with an expanded variety of design situations, as opposed to using only continuous variables. However, complexity and solution difficulty increase dramatically and model formulation becomes very important. A particular problem arising from the design of a gear train employing four spur gear pairs is introduced and formulated in several different ways. An interesting aspect of the problem is its exhibition of three different types of discreteness. The problem could serve as a test for a variety of optimization or artificial intellegence techniques. The best known solution is included in this article, while its derivation is given in a sequel article.


Author(s):  
Guan-Shyong Hwang ◽  
Der-Min Tsay ◽  
Jao-Hwa Kuang ◽  
Tzuen-Lih Chern ◽  
Tsu-Chi Kuo

This study proposes a design of transmission mechanism which is referred to as a series-type independently controllable transmission (ICT). The series-type ICT is an alternative form of the parallel-types proposed in the former researches. The series-type ICT can serve as a continuously or an infinitely variable transmission mechanism, and it can also produce a required angular output velocity that can be independently manipulated by a controller and not affected by the angular velocity of the input shaft. The series-type ICT mechanism is composed of two planetary gear trains and two transmission-connecting members. Kinematic and dynamic characteristics of the ICT mechanism are analyzed and their analytical equations are derived for application in this study.


Sign in / Sign up

Export Citation Format

Share Document