gear mechanism
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Sumir Broota

Abstract: ‘Automation is the key in reducing the repetitive and banal tasks of everyday life’, the oft-quoted aphorism best portrays our effort at making a humanoid hand for tasks that require dexterity of fingers in situations where time and effort are of importance. The cost of human labor, quality of processes or products, time, and safety make this project a need of the hour. The research paper showcases our efforts of making a humanoid robotic arm. The body of the arm is composed of 3D printed parts. Servo Motors with nylon strings were used to control the fingers and the wrist. InMoov Nervo Board was used to control the servos. Worm Gear Mechanism was implemented to control the bicep movement and Worm Wheel is used for shoulder rotation. Machines can perform a wide range of functions without a considerable amount of human intervention. The future scope of Robotics and Automation would be to make a diverse and positive impact in industrial as well as research applications. Keywords: 3D Print, Build Challenges, Electronics, Humanoid, Inmoov, MyRobotLab, Robotic Arm, Robotics


2021 ◽  
Vol 9 (11) ◽  
pp. 1031-1035
Author(s):  
M. Selvaganapathy ◽  
◽  
N. Nishavithri ◽  

This paper aims to design the vehicle for the physically challenged person with reverse gear system. This proposed vehicle helps them not to believe any third persons to require a reverse gear. Here we used \"tumbler gear” mechanism for our prototype where the gear is accustomed by changing the direction of gear. It contains two gears which place in parallel by changing their position with motor direction; that are often changed but in real time application we\'d wish to use ideal gear system with gear box. Also the bike contains ultrasonic sensor which supports echo signals to supply alert on taking reverse to avoid collision between other object. this technique also contains \"GPS\" which help their family to locate the position of the physically challenged person just easily. in case of any emergency, an ultrasonic sensor, GPS module and relay circuits are employed to drive the motor in our prototype.


Author(s):  
Long Bai ◽  
Hao Wang ◽  
Xiaohong Chen ◽  
Jia Zheng ◽  
Liming Xin ◽  
...  

AbstractEnergy consumption and acoustic noise can be significantly reduced through perching in the sustained flights of small Unmanned Aerial Vehicles (UAVs). However, the existing flying perching robots lack good adaptability or loading capacity in unstructured environments. Aiming at solving these problems, a deformable UAV perching mechanism with strong adaptability and high loading capacity, which is inspired by the structure and movements of birds' feet, is presented in this paper. Three elastic toes, an inverted crank slider mechanism used to realize the opening and closing movements, and a gear mechanism used to deform between two configurations are included in this mechanism. With experiments on its performance towards different objects, Results show that it can perch on various objects reliably, and its payload is more than 15 times its weight. By integrating it with a quadcopter, it can perch on different types of targets in outdoor environments, such as tree branches, cables, eaves, and spherical lamps. In addition, the energy consumption of the UAV perching system when perching on objects can be reduced to 0.015 times that of hovering.


Author(s):  
James A. C. Knowles ◽  
Bernd Krauskopf ◽  
Etienne B. Coetzee

AbstractThis paper investigates the unlocking of a non-conventional nose landing gear mechanism that uses a single lock to fix the landing gear in both its downlocked and uplocked states (as opposed to having two separate locks as in most present nose landing gears in operation today). More specifically, we present a bifurcation analysis of a parameterized mathematical model for this mechanical system that features elastic constraints and takes into account internal and external forces. This formulation makes it possible to employ numerical continuation techniques to determine the robustness of the proposed unlocking strategy with respect to changing aircraft attitude. In this way, we identify as a function of several parameters the steady-state solutions of the system, as well as their bifurcations: fold bifurcations where two steady states coalesce, cusp points on curves of fold bifurcations, and a swallowtail bifurcation that generates two cusp points. Our results are presented as surfaces of steady states, joined by curves of fold bifurcations, over the plane of retraction actuator force and unlock actuator force, where we consider four scenarios of the aircraft: level flight; steep climb; steep descent; intermediate descent. A crucial cusp point is found to exist irrespective of aircraft attitude: it corresponds to the mechanism being at overcentre, which is a position that creates a mechanical singularity with respect to the effect of forces applied by the actuators. Furthermore, two cusps on a key fold locus are unfolded in a (codimension-three) swallowtail bifurcation as the aircraft attitude is changed: physical factors that create these bifurcations are presented. A practical outcome of this research is the realization that the design of this and other types of landing gear mechanism should be undertaken by considering the effects of forces over considerable ranges, with a special focus on the overcentre position, to ensure a smooth retraction occurs. More generally, continuation methods are shown to be a valuable tool for determining the overall geometric structure of steady states of mechanisms subject to (external) forces.


Robotica ◽  
2021 ◽  
pp. 1-24
Author(s):  
Heesik Jang ◽  
Ho Moon Kim ◽  
Min Sub Lee ◽  
Yong Heon Song ◽  
Yoongeon Lee ◽  
...  

Abstract This paper presents a modularized autonomous pipeline inspection robot called MRINSPECT VII+, which we recently developed. MRINSPECT VII+ is aimed at inspect in-service urban gas pipelines with a diameter of 200 mm. The robot consists of five basic modules: driving, sensing, joint, and battery modules. For nondestructive testing (NDT), an NDT module can be added to the system. The driving module uses a multiaxial differential gear mechanism to provide traction forces to the robot. The sensor module recognizes the pipeline element using position-sensitive detector (PSD) sensors and a CCD camera. The control module contains a computing unit and manages the robot’s autonomous navigation. The battery module supplies power to the system. Each module is connected via backdrivable active joint modules, which provide flexibility while moving inside narrow pipelines. Additionally, the wireless communication module helps the system communicate with the ground station. We tested MRINSPECT VII+ in real pipeline environments and validated its feasibility successfully.


2021 ◽  
Vol 67 (7-8) ◽  
pp. 352-362
Author(s):  
Yang-zhi Chen ◽  
Chao He ◽  
Yue-ling Lyu

In this paper, a novel line gear mechanism is proposed; it is called the variable shaft angle line gear mechanism (VSALGM). VSALGM has two rotational degrees of freedom, one is the rotation of the two gears with a constant transmission ratio, and the other is the relative swing of the two gears shafts. First, a novel contact model of VSALGM composed of one driven contact curve and one driving line teeth working surface (DLTWS) was proposed. With the concept, the basic design equations for VSALGM were derived on the basis of the space curve meshing theory of line gear. Moreover, the design criterion of pressure angle for VSALGM was analysed and proposed on the basis of the contact model. A basic design method for VSALGM was thus developed. A design example was given, and prototypes were manufactured using three-dimensional (3D) printing. Kinematic experiments and gear contact spot testing were carried out on a self-made kinematic test rig by the prototypes. The results show that the VSALGM designed in this paper can achieve a continuous, smooth and stable meshing transmission while the shaft angle is continuously changed within its setting range.


Sign in / Sign up

Export Citation Format

Share Document