scholarly journals Evaluation of Delaminations in Aluminium Honeycomb Structures Using the Mechanical Impedance Technique

Author(s):  
Brian Stephen Wong ◽  
Cheng Guan Tui

This paper describes an evaluation of the capability of a mechanical impedance instrument, for detecting delamination defects in aluminium honeycomb structures. The resonant frequency was found to decrease as the centre of a defect was approached. The defects have been found to be accurately represented by a model for a vibrating plate, which is rigidly clamped at its edges. It was also possible to use resonant frequency to determine the size of the defects in the specimens used in this paper. An irregularly shaped defect showed that the rate of drop in resonant frequency across an extremity of the defect was affected by the radius at the extremity and the proximity to the main central area of the defect. An important result was that an ellipsoidal shaped defect would be sized as a circular defect of diameter equal to the minor diameter of the ellipse. Also a boron skinned honeycomb was found to behave similarly to a glass fibre skinned honeycomb.

2017 ◽  
Vol 28 (19) ◽  
pp. 2717-2736 ◽  
Author(s):  
Naveet Kaur ◽  
Lingfang Li ◽  
Suresh Bhalla ◽  
Yong Xia ◽  
Pinghe Ni ◽  
...  

Since the last two decades, the electro-mechanical impedance technique has undergone extensive theoretical and experimental transformations coupled with the evolution of newer practical adaptations and variants. Notable among these are the metal wire–based variant, the dual piezo configuration and the embedded configuration, over and above the conventional surface-bonded configuration. Although there is a plethora of electro-mechanical impedance–related research devoted to metallic structures, only a limited number of studies are available for reinforced concrete structures, which are characterized by more complex behaviour and pose multiple problems for the electro-mechanical impedance sensors such as small range and high damping due to heterogeneous constitution. This article presents, for the first time, a comprehensive comparative study covering four different variants, namely, the surface-bonded single piezo configuration, the embedded single piezo configuration and the metal wire single piezo configuration in electro-mechanical impedance technique for structural health monitoring of a real-life-sized reinforced concrete beam subjected to destructive testing. The article also proposes a modified and more practical version of the dual piezo configuration called the modified dual piezo configuration, employing concrete vibration sensors. It is found that the modified dual piezo configuration is the most expedient among all variants in capturing the damage with respect to the first occurrence of cracks and the final warning of ultimate failure. Metal wire single piezo configuration is good in detecting the first level of damage; however, its efficiency ceases thereafter when crack size increases. It can be considered as an alternative to surface-bonded single piezo configuration in the scenarios where the damage level is incipient. The sensitivity of the modified dual piezo configuration increases with increasing number of actuators connected in parallel due to an increase in the output current. Also, contrary to the surface-bonded single piezo configuration, the susceptance signature of the modified dual piezo configuration is equally sensitive to damage due to the absence of capacitance part in its admittance signature. Hence, its susceptance can also be used for damage severity measurement for incipient damage level in reinforced concrete structures. The surface-bonded single piezo configuration is found to be best in quantifying damage severity in terms of the equivalent stiffness parameter. Embedded single piezo configuration and metal wire single piezo configuration, on the other hand, correlate well with the global dynamic stiffness of the structure. Overall, the proposed integration enables an early detection of damage, its propagation and improved severity measurement for reinforced concrete structures, thus contributing to new application protocols.


2010 ◽  
Vol 26 (3) ◽  
pp. 373-384 ◽  
Author(s):  
C.-C. Cheng ◽  
C.-Y. Lin ◽  
J.-H. Ho ◽  
C.-S. Chen ◽  
J. Shieh ◽  
...  

AbstractWe investigated the design parameters of a compact pot-like ultrasonic sensor which possesses a highly anisotropic beam pattern. As the sensor size is small due to its application constraint, the parameters are thus highly coupled to one another. We analyzed the respective effects of the parameters in the case where there is a vertical beam width reduction. The parameters investigated include resonant frequency, vibrating plate width-expanded angle, and ratio of thickness discontinuity of the vibrating plate. Numerical models developed by combining finite-element analysis and spatial Fourier transforms were adopted to predict the far-field radiating beam pattern of the various design configurations. The displacement distribution of the vibrating plate was measured using a microscopic laser Doppler vibrometer and the far-field pressure beam patterns were measured using a standard microphone in a semianechoic environment. The three configurations we used to validate the simulation model resulted in an H-V ratio of 2.67, 2.68 and 3.13, respectively which all agreed well with the numerical calculations. We found that by increasing the operating resonant frequency from 40kHz to 58kHz, the vertical far-field beam width of an ultrasonic sensor can be reduced by 31.62%. We found that the vertical beam width can be significantly reduced when the ratio of the thickness discontinuity of the vibrating plate decreases from 1 to 0.4 and is incorporated with its optimal width-expanded angle of the vibrating plate. It appears that an ultrasonic sensor with this type of anisotropic beam pattern can be ideally adopted for today's automotive applications.


2018 ◽  
Vol 8 (11) ◽  
pp. 2277 ◽  
Author(s):  
Sung-Sik Park ◽  
Jung-Shin Lee ◽  
Dong-Eun Lee ◽  
Jun-Cheol Lee

Recently, an electro-mechanical impedance (EMI) technique has found wide application in the monitoring of concrete structures. This EMI technique was employed for measuring the unit weights of various grain sizes of sand and the relevant process is reported herein. A piezoelectric sensor (PZT, i.e., lead zirconate titanate sensor) was imbedded into small, medium, and large-sized grains of the Nakdong river sand and a surcharge was applied. The effect of an increase in unit weight owing to the surcharge was investigated in terms of the resonant frequency (peak frequency) and corresponding conductance at resonant frequency (peak conductance). A ceramic-coated PZT sensor was used to prevent the occurrence of a short circuit. The measured peak frequency and conductance from the PZT sensor were correlated with the unit weight of sand. With an increase in the unit weight of sand, the peak PZT frequency was found to have increased, however, the peak conductance was seen to have decreased. The peak PZT frequency and conductance were seen to be strongly correlated with the unit weight of Nakdong river sand except for the peak conductance of large grain sized sand.


Sign in / Sign up

Export Citation Format

Share Document