beam pattern
Recently Published Documents


TOTAL DOCUMENTS

522
(FIVE YEARS 87)

H-INDEX

27
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 47
Author(s):  
Qingchun Luo ◽  
Yantao Zhou ◽  
Yihong Qi ◽  
Pu Ye ◽  
Francesco de Paulis ◽  
...  

The measurement of the phased array antenna (PAA) is completely different from the traditional antenna, due to its multi beam patterns. Usually, each beam pattern of the PAA needs a separate measurement, which makes the overall time extremely long. Thus, the traditional method can no longer meet the efficiency and cost requirements of new PAA measurement. In this paper, a pattern reconstruction method is proposed which significantly reduce the measurement time of multi-beam PAAs. With the known array element patterns (AEP) and theoretical weighted port excitation of the beams, any beam pattern can be predicted by measuring only a certain beam pattern, due to the element excitation coefficient (including the matching, mutual coupling, and manufacturing factors, etc.) of the specific PAA being calculated. The approach has low reconstruction error in term of beam pointing accuracy, side lobe, and co-polar and cross-polar patterns while being validated for large scanning range. Through theoretical derivation and experiments, the effectiveness of the method is verified, and the testing efficiency of the phased array antenna can be improved by 10 times or even more.


2021 ◽  
Vol 332 ◽  
pp. 113129
Author(s):  
Ara Yeon ◽  
Hong Goo Yeo ◽  
Yongrae Roh ◽  
Kyungseop Kim ◽  
Hee-Seon Seo ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2439
Author(s):  
Youchung Chung ◽  
Teklebrhan H. Berhe

This paper presents a design of a radio frequency identification (RFID) tag antenna in the ultra-high-frequency (UHF) range, which is applicable to a vehicular license plate attached to a vehicle bumper. The main goals are to first improve the identification ratio by controlling the radiation beam pattern and, second, to control the beam direction. Since every vehicle has a license plate, the available plate structure is used to design the antenna. The shape of the tag is rectangular and has a dimension of 525 mm × 116 mm, which is smaller than the typical size of standard plates, 540 mm × 120 mm, used in Europe and Korea. The fabricated tag antenna, the license plate, and the vehicular bumper are fixed by volt and nut. For vehicle tracking and identification, RFID readers are deployed on the road side. For efficient identification, a long distance passive UHF RFID license plate with a patch antenna is proposed to provide not only line-of-sight identification but also left and right beams. Unlike the general UHF tag antennas, in this paper, the patch antenna is designed to attach to the metal part of the car, the license plate holder. The beam patterns of the RFID tag antenna can be controlled by the patch antenna parameter values. The simulation result demonstrates that the proposed UHF RFID tag antenna has a beam radiation pattern as required at 920 MHz. In addition, the estimated read range of the proposed plate meets the requirement of RFID systems.


2021 ◽  
Author(s):  
Grant J. Gourley ◽  
Maksim V. Kuznetcov ◽  
Dimitris E. Anagnostou
Keyword(s):  

2021 ◽  
Author(s):  
Cheng Zhang ◽  
Mengzhe Wang ◽  
Weiliang He ◽  
Lujia Zhang ◽  
Yongming Huang

2021 ◽  
Vol 16 (1) ◽  
pp. 107-120
Author(s):  
S. Pillai ◽  
T. Santhanakrishnan ◽  
R. Rajesh

A novel beamforming technique that resembles the principle of interference is proposed for sonar arrays to suppress the side lobes while the main lobe is kept intact. It uses two window functions. The first one is a rectangular function that produces a primary beam pattern. A secondary new window function is derived and its beam pattern is steered such that the null or trough of the main lobe of the new window coincides with the peak or crest of the first side lobe of the rectangular window and so on to other major side lobes. Pattern multiplication was used to get a final beam pattern. The approach is simulated and verified through a sonar array with 24 hydrophone sensors.


Author(s):  
Vadim Romanuke

Background. For radar systems, the beam pattern of a uniform linear array (ULA) is synthesized to ensure signal selectivity by direction. A specific ULA sidelobe is cancelled by rescaling the beam weights. In particular, this is done by increasing the number of sensors and shortening the scanning step. However, a noticeable limitation is a loss of the transmitted power. Therefore, the problem is to optimally balance the number of sensors versus effective ULA sidelobe cancellation. Objective. In order to ensure multiple direction interference suppression, the goal is to find an optimal number of ULA radar sensors for the beam pattern synthesis. The criterion is to determine such a minimum of these sensors at which mainlobes towards useful signal directions are evened as much as possible. Methods. To achieve the said goal, the ULA sidelobe cancellation is simulated. The simulation is configured and carried out by using MATLAB® R2020b Phased Array System ToolboxTM functions based on an algorithm of the sidelobe cancellation. Results. By increasing the number of ULA sensors, the beam pattern lobes are not only thinned but also change in their power. In particular, the interference direction sidelobes become relatively stronger. The number of sensors is limited by the three influencing factors: the thinned-array curse transmitted power loss, the aperture size, and the sidelobes intensification. Conclusions. An optimal number of ULA radar sensors for the beam pattern synthesis can be found when the scanning step is equal to the least distance between adjacent interference directions. At the start, the number of sensors is set at the number of useful signal directions. If the mainlobes towards useful signal directions are not evened enough, the set of interference directions is corrected. Keywords: radar phased array; beam pattern; interference direction; sidelobe cancellation; aperture size.


2021 ◽  
Vol 26 (2) ◽  
pp. 173-188
Author(s):  
Yu. V. Kornienko ◽  
◽  
I. A. Dulova ◽  
N. V. Bondarenko ◽  
◽  
...  

Purpose: The paper discusses the possibility for increasing the planet’s surface relief retrieving accuracy with the improved photoclinometry method through the reference of the desired relief to the altimetry data. The general approach to solving the problem is proposed. The use of altimeters having both wide and narrow beam patterns are discussed, but the narrow beam pattern altimeter data is studied more in detail. The spatial resolution of the retrieved relief calculated with the improved photoclinometry method conforms to the one of the source images. Altimetry allows absolute reference to the surface heights and improves the accuracy of the relief determination. Design/metodology/approach: The work is based on the improved photoclinometry method for the planet’s surface relief retrieving from images. This method is mathematically rigorous and uses the Bayesian statistical approach, that allows calculation of the most probable relief according to available observations. Findings: An approach to determining the optimal statistical estimate of the surface heights from images in the frames of the improved photoclinometry method is proposed and an expression for the optimal filter which converts source images along with the wide beam pattern altimetry data into the most probable relief of the planet surface area is presented. The reference technique for the narrow beam pattern altimeter data is formulated. The efficiency of the method has been verified with the computer simulation. The relief of the surface area in Mare Imbrium on the Moon was retrieved using three images and laser altimeter data taken by the “Lunar Reconnaissance Orbiter” spacecraft. Conclusions: Accounting for the narrow beam pattern altimeter data increases the accuracy of the relief determination. Using the narrow beam pattern altimeter data turns out to be more preferable over the involving wide beam pattern altimeter data. Computer simulation has shown that accounting for the narrow beam pattern altimeter data significantly increases the accuracy of the calculated heights as against using images exclusively and helps to speed up the calculation procedure. Key words: planet surface relief; photometry; altimetry; optimal filtering; statistical estimation of random value


Sign in / Sign up

Export Citation Format

Share Document