The Application of Adaptive Wavelet Method to Multi-Dimensional Limiting Process for Enhancement of Computational Efficiency

Author(s):  
Hyungmin Kang ◽  
Kyunghyun Park ◽  
Dongho Lee ◽  
Kyuhong Kim ◽  
Seunghwan Park ◽  
...  

An adaptive wavelet method is applied in order to enhance the computational efficiency of enhanced Multi-dimensional Limiting Process (e-MLP) without deterioration of the numerical accuracy of original Computational Fluid Dynamics (CFD) scheme. For this purpose, higher order of adaptive wavelet method is constructed including higher order of wavelet decomposition and modified thresholding. Besides, the locations of crucial features such as shock, vortex core, etc. are automatically and accurately searched in the CFD dataset through wavelet transformation. Only on these locations, high order spatial interpolation scheme with e-MLP are performed; in the other locations, interpolation method is utilized to compute residual values, which reduces the computational time of flux evaluation. This high order adaptive wavelet method was applied to unsteady Euler flow computations such as shock-vortex interaction problem. Throughout these processes, it was verified that computational efficiency was enhanced with preservation of numerical accuracy of CFD solver.

2015 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
Ratikanta Behera ◽  
Mani Mehra

In this paper, we present a dynamically adaptive wavelet method for solving Schrodinger equation on one-dimensional, two-dimensional and on the sphere. Solving one-dimensional and two-dimensional Schrodinger equations are based on Daubechies wavelet with finite difference method on an arbitrary grid, and for spherical Schrodinger equation is based on spherical wavelet over an optimal spherical geodesic grid. The method is applied to the solution of Schrodinger equation for computational efficiency and achieve accuracy with controlling spatial grid adaptation — high resolution computations are performed only in regions where a solution varies greatly (i.e., near steep gradients, or near-singularities) and a much coarser grid where the solution varies slowly. Thereupon the dynamic adaptive wavelet method is useful to analyze local structure of solution with very less number of computational cost than any other methods. The prowess and computational efficiency of the adaptive wavelet method is demonstrated for the solution of Schrodinger equation on one-dimensional, two-dimensional and on the sphere.


2009 ◽  
Vol 30 (3) ◽  
pp. 423-455 ◽  
Author(s):  
Tammo Jan Dijkema ◽  
Christoph Schwab ◽  
Rob Stevenson

Sign in / Sign up

Export Citation Format

Share Document