flexural hinges
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6826
Author(s):  
Yan Li ◽  
Wenjie Ge ◽  
Xu Zhang ◽  
Xinxing Tong

The change of an external environment leads to the defocusing phenomenon of the space optical remote sensor. The performance of the focusing mechanism is related to the image quality of the remote sensor. It was optimized for a novel focusing mechanism comprised of a flexural hinge lever-type amplifier and several piezoelectric ceramics to improve the performance on high loads and large stroke in this research. It has advantages of a lightweight, simple structure and high reliability compared with the traditional focusing mechanism. The input displacement from the piezoelectric actuators was amplified by a two-stage flexure hinge lever-type mechanism. Dimensional parameters of the flexural hinges were considered as design variables. Based on the optimization ideology, reasonable compliance and dimension parameters of the flexural hinges were analyzed for the focusing mechanism. Simulation and experiments of deformation were conducted to validate the correctness of design optimization. The results show that the focusing mechanism designed by the proposed method has the capabilities of an amplification ratio of 100 times and a loading carrying capacity of 2 kg. This work provides a novel strategy to design an excellent focusing mechanism with lightweight, high loads and large stroke. Moreover, it is believed that this approach can be extended to other complex sensors.


Author(s):  
Salem Nazih Salem, Mustafa Rafik Hasan

  Most of companies wish to decrease maintenance and on the other hand having the same target with low weight and no friction although it may cost more, when a machine is built. Using flexural (also flexure) hinges in a system, at least, leads to all of these advantages. Considering a planar mechanical system consists of double ten bar mechanism with revolute joints, we replace each revolute joint with super elastic hinge. Doing so, we have a gate to build a system, strongly recommended, to achieve the same goal using minimum energy. The main purpose of this paper is to elaborate a mathematical apparatus able to estimate the deviations of the considered system before and after replacing revolute joints taking into account the real performance of the novel system through large bending displacements in the flexure (flexural) hinges.    


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987954
Author(s):  
Volkan Parlaktaş ◽  
Engin Tanık ◽  
Çağıl Merve Tanık

In this article, a novel fully compliant spherical four-bar mechanism is introduced and its generalized design methodology is proposed. The original fully compliant mechanism lies on a plane at the free position (undeflected position); therefore, it has the advantages of ease of manufacturing, minimized parts, and no backlash. First, the mobility conditions of the mechanism are obtained. The dimensions of the mechanism are optimally calculated for maximum output rotation, while keeping the deflection of flexural hinges at an acceptable range. Using an optimization method, design tables are prepared to display the relationship between arc lengths and corresponding deflections of flexural hinges. Input–output torque relationship and stresses at compliant segments are obtained analytically. A mechanism dimensioned by this novel design method is analyzed by a finite element analysis method, and the analytical results are verified. Finally, the mechanism is manufactured and it is ensured that the deflections of the compliant segments are consistent with the theoretical results.


Author(s):  
Marcos B. Oliveira ◽  
Chang Liu ◽  
Mengtao Zhao ◽  
Samuel M. Felton

This paper presents a motor driven wrist brace that can adjust its stiffness by changing its mesoscale geometry. The design involves a plate structure that folds from a flexible flat shape to a stiff corrugated shape by means of a motor driven tendon. The structure is built using a laminate of rigid and flexible layers, with embedded flexural hinges that allow it to fold. The paper proposes a simplified analytical model to predict stiffness, and physical three-point bending tests indicate that the brace can increase its stiffness up to fifty times by folding.


Micromachines ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 365 ◽  
Author(s):  
Xin Xie ◽  
Majid Bigdeli Karimi ◽  
Sanwei Liu ◽  
Battushig Myanganbayar ◽  
Carol Livermore

Small-scale, out-of-plane actuators can enable tactile interfaces; however, achieving sufficient actuator force and displacement can require larger actuators. In this work, 2-mm2 out-of-plane microactuators were created, and were demonstrated to output up to 6.3 µm of displacement and 16 mN of blocking force at 170 V. The actuators converted in-plane force and displacement from a piezoelectric extensional actuator into out-of-plane force and displacement using robust, microelectromechanical systems (MEMS)-enabled, half-scissor amplifiers. The microscissors employed two layers of lithographically patterned SU-8 epoxy microstructures, laminated with a thin film of structural polyimide and adhesive to form compact flexural hinges that enabled the actuators’ small area. The self-aligned manufacture minimized assembly error and fabrication complexity. The scissor design dominated the actuators’ performance, and the effects of varying scissor angle, flexure thickness, and adhesive type were characterized to optimize the actuators’ output. Reducing the microscissor angle yielded the highest actuator performance, as it maximized the amplification of the half-scissor’s displacement and minimized scissor deformation under externally applied loads. The actuators’ simultaneously large displacements and blocking forces for their size were quantified by a high displacement-blocking force product per unit area of up to 50 mN·µm/mm2. For a linear force–displacement relationship, this corresponds to a work done per unit area of 25 mN·µm/mm2.


Author(s):  
M. M. Sawant ◽  
P. R. Anerao

To reduce fatigue failure of compliant mechanism, it is necessary to design and analyze the flexure hinge parametrically. A methodology to design a flexural hinges for compliant mechanism is proposed in this paper to improve fatigue life. Results obtained by finite element analysis shows that used design equations are reliable and easier to be used in the design of such proportion flexural hinges. The proposed analytical model gives a new viewpoint on the design of circular flexure hinge based compliant mechanisms. Circular flexural joint was manufactured by using Al 6061 T6 material and experimental setup is developed to test this flexural hinge. Results obtained by FEA were found to be in good correlation with experimental results. The variation in the results can be attributed to variation in properties of material, actual dimensions of setup etc.


Sign in / Sign up

Export Citation Format

Share Document