An Improved Method for Designing Flexure-Based Nonlinear Springs

Author(s):  
Qiaoling Meng ◽  
Giovanni Berselli ◽  
Rocco Vertechy ◽  
Vincenzo Parenti Castelli

Monolithic Flexure-based Compliant Mechanisms (MFCM) can functionally act as nonlinear springs by providing a desired load-displacement profile at one point on their structure. Once the MFCM topology is chosen, these particular springs can be conveniently synthesized by resorting to the well-known Pseudo-Rigid-Body approximation, whose accuracy strongly depends on the modeling precision of the flexures’ principal compliance. For various types of flexures, closed-form solutions have been proposed which express the compliance factors as functions of the flexure dimensions. Nonetheless, the reliability of these analytical relations is limited to slender, beam-like, hinges undergoing small deflections. In order to overcome such limitations, this paper provides empirical equations, derived from finite element analysis, that can be used for the optimal design of circular, elliptical, and corner-filleted flexural hinges with general aspect ratios on the basis of both principal compliance and maximum bearable stress. As a case study, a nonlinear spring conceived as a four-bar linkage MFCM is synthesized and simulated by means of finite element analysis. Numerical results confirm that the aforementioned empirical equations outperform their analytical counterparts when modeling thick cross-section hinges undergoing large deflections.

Author(s):  
M. M. Sawant ◽  
P. R. Anerao

To reduce fatigue failure of compliant mechanism, it is necessary to design and analyze the flexure hinge parametrically. A methodology to design a flexural hinges for compliant mechanism is proposed in this paper to improve fatigue life. Results obtained by finite element analysis shows that used design equations are reliable and easier to be used in the design of such proportion flexural hinges. The proposed analytical model gives a new viewpoint on the design of circular flexure hinge based compliant mechanisms. Circular flexural joint was manufactured by using Al 6061 T6 material and experimental setup is developed to test this flexural hinge. Results obtained by FEA were found to be in good correlation with experimental results. The variation in the results can be attributed to variation in properties of material, actual dimensions of setup etc.


Author(s):  
Adarsh Mavanthoor ◽  
Ashok Midha

Significant reduction in cost and time of bistable mechanism design can be achieved by understanding their bistable behavior. This paper presents bistable compliant mechanisms whose pseudo-rigid-body models (PRBM) are four-bar mechanisms with a torsional spring. Stable and unstable equilibrium positions are calculated for such four-bar mechanisms, defining their bistable behavior for all possible permutations of torsional spring locations. Finite Element Analysis (FEA) and simulation is used to illustrate the bistable behavior of a compliant mechanism with a straight compliant member, using stored energy plots. These results, along with the four-bar and the compliant mechanism information, can then be used to design a bistable compliant mechanism to meet specified requirements.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2021 ◽  
pp. 1-14
Author(s):  
Xiaodong Chen ◽  
ZM Xie ◽  
Huifeng Tan

Abstract How to enlarge the output displacement is a key issue in the research field of microgrippers. It is difficult to further enlarge the output displacement for the traditional displacement transmission mechanism (DTM). In this research, a two-stage amplification cylinder-driven DTM based on the compliant mechanisms is designed to realize the displacement output expansion. The opening and closing of the clamping jaws is driven by the air cylinder to enlarge the output displacement of the microgripper. According to the analysis of statics model of the mechanism, the relationship between the output displacement of the microgripper and the driving pressure of the cylinder is established. The magnification of the microgripper is obtained using a dynamic model. Moreover, based on the finite element analysis, the mechanical structure parameters are optimized. The microgripper was fabricated by utilizing wire electro discharge machining (WEDM) technique, and then a series of experiments were carried out to obtain the relationship between the displacement and the driving pressure. It is found that the maximum output displacement measured is 1190.4μm under the pressure of 0-0.6 Mpa, corresponding to the magnification of 47.63. Compared with the results of finite element analysis and theoretical calculation, the test results have a discrepancy of 2.39% and 6.62%, respectively. The microgripper has successfully grasped a variety of micro-parts with irregular shapes, and parallel grasping can be achieved, demonstrating the potential application of this design in the field of micromanipulation.


Author(s):  
Charles Fourcade ◽  
Minji Fong ◽  
James Axline ◽  
Do Jun Shim ◽  
Chris Lohse ◽  
...  

Abstract As part of a fatigue management program for subsequent license renewal, a flaw tolerance evaluation based on ASME Code, Section XI, Appendix L may be performed. The current ASME Code, Section XI, Appendix L flaw tolerance methodology requires determination of the flaw aspect ratio for initial flaw size calculation. The flaw aspect ratios listed in ASME Section XI, Appendix L, Table L-3210-2, for austenitic piping for example, are listed as a function of the membrane-to-gradient cyclic stress ratio. The Code does not explicitly describe how to determine the ratio, especially when utilizing complex finite element analyses (FEA), involving different loading conditions (i.e. thermal transients, piping loads, pressure, etc.). The intent of the paper is to describe the methods being employed to determine the membrane-to-gradient cyclic stress ratios, and the corresponding flaw aspect ratios (a/l) listed in Table L-3210-2, when using finite element analysis methodology. Included will be a sample Appendix L evaluation, using finite element analysis of a pressurized water reactor (PWR) pressurizer surge line, including crack growth calculations for circumferential flaws in stainless steel piping. Based on this example, it has been demonstrated that, unless correctly separated, the membrane-to-gradient cyclic stress ratios can result in extremely long initial flaw lengths, and correspondingly short crack growth durations.


2016 ◽  
Vol 681 ◽  
pp. 100-116
Author(s):  
Georgios A. Drosopoulos ◽  
Nikolaos Kaminakis ◽  
Nikoletta Papadogianni ◽  
Georgios E. Stavroulakis

The design of novel mechanical microstructures having auxetic behaviour is proposed in this paper using techniques of topology optimization for compliant mechanisms. The resulting microstructure can be modified in order to cover additional needs, not included in the topology optimization formulation. Classical structural optimization, contact mechanics, homogenization and nonlinear finite element analysis are used for this step. Thus, the modified microstructure or composite is studied with numerical homogenization in order to verify that it still has the wished auxetic behaviour. Finally, nonlinear finite element analysis shows how the auxetic behaviour is influenced by unilateral contact between the constituent materials, large displacements and elastoplasticity.


2005 ◽  
Vol 2005 (0) ◽  
pp. _226-1_-_226-6_
Author(s):  
Takao YAMAGUCHI ◽  
Atsushi IZAWA ◽  
Ken-ichi NAGAI ◽  
Shinichi MARUYAMA

Author(s):  
Sara McCaslin ◽  
Kent Lawrence

Closed-form solutions, as opposed to numerically integrated solutions, can now be obtained for many problems in engineering. In the area of finite element analysis, researchers have been able to demonstrate the efficiency of closed-form solutions when compared to numerical integration for elements such as straight-sided triangular [1] and tetrahedral elements [2, 3]. With higher order elements, however, the length of the resulting expressions is excessive. When these expressions are to be implemented in finite element applications as source code files, large source code files can be generated, resulting in line length/ line continuation limit issues with the compiler. This paper discusses a simple algorithm for the reduction of large source code files in which duplicate terms are replaced through the use of an adaptive dictionary. The importance of this algorithm lies in its ability to produce manageable source code files that can be used to improve efficiency in the element generation step of higher order finite element analysis. The algorithm is applied to Fortran files developed for the implementation of closed-form element stiffness and error estimator expressions for straight-sided tetrahedral finite elements through the fourth order. Reductions in individual source code file size by as much as 83% are demonstrated.


2021 ◽  
pp. 1-17
Author(s):  
Collin Ynchausti ◽  
Nathan Brown ◽  
Spencer P Magleby ◽  
Anton E. Bowden ◽  
Larry L Howell

Abstract Deployable Euler Spiral Connectors (DESCs) are introduced as compliant deployable flexures that can span gaps between segments in a mechanism and then lay flat when under strain in a stowed position. This paper presents models of Euler spiral beams combined in series and parallel that can be used to design compact compliant mechanisms. Constraints on the design of DESCs are also presented. Analytic models were compared to finite element analysis and experimental data. A spinal implant and a linear ratcheting system are presented as illustrative applications of DESCs.


Sign in / Sign up

Export Citation Format

Share Document