Design Improvement by Sensitivity Analysis (DISA) Under Interval Uncertainty Using Multi-Objective Optimization

Author(s):  
J. Hamel ◽  
M. Li ◽  
S. Azarm

Uncertainty in the input parameters to an engineering system may not only degrade the system’s performance, but may also cause failure or infeasibility. This paper presents a new sensitivity analysis based approach called Design Improvement by Sensitivity Analysis (DISA). DISA analyzes the interval parameter uncertainty of a system and, using multi-objective optimization, determines an optimal combination of design improvements required to enhance performance and ensure feasibility. This is accomplished by providing a designer with options for both uncertainty reduction and, more importantly, slight design adjustments. The approach can provide improvements to a design of interest that will ensure a minimal amount of variation in the objective functions of the system while also ensuring the engineering feasibility of the system. A two stage sequential framework is used in order to effectively employ metamodeling techniques to approximate the analysis function of an engineering system and greatly increase the computational efficiency of the approach. This new approach has been applied to two engineering examples of varying difficulty to demonstrate its applicability and effectiveness.

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
J. Hamel ◽  
M. Li ◽  
S. Azarm

Uncertainty in the input parameters to an engineering system may not only degrade the system’s performance but may also cause failure or infeasibility. This paper presents a new sensitivity analysis based approach called design improvement by sensitivity analysis (DISA). DISA analyzes the interval uncertainty of input parameters and using multi-objective optimization, determines an optimal combination of design improvements that will ensure a minimal variation in the objective functions of the system, while also ensuring the feasibility. The approach provides a designer with options for both uncertainty reduction and, more importantly, slight design adjustments. A two-stage sequential framework is used that can employ either the original analysis functions or their metamodels to greatly increase the computational efficiency of the approach. This new approach has been applied to two engineering examples of varying difficulty to demonstrate its applicability and effectiveness. The results produced by these examples show the ability of the approach to ensure the feasibility of a preexisting design under interval uncertainty by effectively adjusting available degrees of freedom in the system without the need to completely redesign the system.


2021 ◽  
Vol 11 (10) ◽  
pp. 4575
Author(s):  
Eduardo Fernández ◽  
Nelson Rangel-Valdez ◽  
Laura Cruz-Reyes ◽  
Claudia Gomez-Santillan

This paper addresses group multi-objective optimization under a new perspective. For each point in the feasible decision set, satisfaction or dissatisfaction from each group member is determined by a multi-criteria ordinal classification approach, based on comparing solutions with a limiting boundary between classes “unsatisfactory” and “satisfactory”. The whole group satisfaction can be maximized, finding solutions as close as possible to the ideal consensus. The group moderator is in charge of making the final decision, finding the best compromise between the collective satisfaction and dissatisfaction. Imperfect information on values of objective functions, required and available resources, and decision model parameters are handled by using interval numbers. Two different kinds of multi-criteria decision models are considered: (i) an interval outranking approach and (ii) an interval weighted-sum value function. The proposal is more general than other approaches to group multi-objective optimization since (a) some (even all) objective values may be not the same for different DMs; (b) each group member may consider their own set of objective functions and constraints; (c) objective values may be imprecise or uncertain; (d) imperfect information on resources availability and requirements may be handled; (e) each group member may have their own perception about the availability of resources and the requirement of resources per activity. An important application of the new approach is collective multi-objective project portfolio optimization. This is illustrated by solving a real size group many-objective project portfolio optimization problem using evolutionary computation tools.


Author(s):  
M. Li ◽  
N. Williams ◽  
S. Azarm

Sensitivity analysis has received significant attention in engineering design. While sensitivity analysis methods can be global, taking into account all variations, or local, taking into account small variations, they generally identify which uncertain parameters are most important and to what extent their effect might be on design performance. The extant methods do not, in general, tackle the question of which ranges of parameter uncertainty are most important or how to best allocate investments to partial uncertainty reduction in parameters under a limited budget. More specifically, no previous approach has been reported that can handle single-disciplinary multi-output global sensitivity analysis for both a single design and multiple designs under interval uncertainty. Two new global uncertainty metrics, i.e., radius of output sensitivity region and multi-output entropy performance, are presented. With these metrics, a multi-objective optimization model is developed and solved to obtain fractional levels of parameter uncertainty reduction that provide the greatest payoff in system performance for the least amount of “investment”. Two case studies of varying difficulty are presented to demonstrate the applicability of the proposed approach.


2021 ◽  
Author(s):  
Israel Mayo-Molina ◽  
Juliana Y. Leung

Abstract The Steam Alternating Solvent (SAS) process has been proposed and studied in recent years as a new auspicious alternative to the conventional thermal (steam-based) bitumen recovery process. The SAS process incorporates steam and solvent (e.g. propane) cycles injected alternatively using the same configuration as the Steam-Assisted Gravity-Drainage (SAGD) process. The SAS process offers many advantages, including lower capital and operational cost, as well as a reduction in water usage and lower Greenhouse Gas (GHG) Emissions. On the other hand, one of the main challenges of this relatively new process is the influence of uncertain reservoir heterogeneity distribution, such as shale barriers, on production behaviour. Many complex physical mechanisms, including heat transfer, fluid flows, and mass transfer, must be coupled. A proper design and selection of the operational parameters must consider several conflicting objectives. This work aims to develop a hybrid multi-objective optimization (MOO) framework for determining a set of Pareto-optimal SAS operational parameters under a variety of heterogeneity scenarios. First, a 2-D homogeneous reservoir model is constructed based on typical Cold lake reservoir properties in Alberta, Canada. The homogeneous model is used to establish a base scenario. Second, different shale barrier configurations with varying proportions, lengths, and locations are incorporated. Third, a detailed sensitivity analysis is performed to determine the most impactful parameters or decision variables. Based on the results of the sensitivity analysis, several objective functions are formulated (e.g., minimizing energy and solvent usage). Fourth, Response Surface Methodology (RSM) is applied to generate a set of proxy models to approximate the non-linear relationship between the decision variables and the objective functions and to reduce the overall computational time. Finally, three Multi-Objective Evolutionary Algorithms (MOEAs) are applied to search and compare the optimal sets of decision parameters. The study showed that the SAS process is sensitive to the shale barrier distribution, and that impact is strongly dependent on the location and length of a specific shale barrier. When a shale barrier is located near the injector well, pressure and temperature may build up in the near-well area, preventing additional steam and solvent be injected and, consequently, reducing the oil production. Operational constraints, such as bottom-hole pressure, steam trap criterion, and bottom-hole gas rate in the producer, are among various critical decision variables examined in this study. A key conclusion is that the optimal operating strategy should depend on the underlying heterogeneity. Although this notion has been alluded to in other previous steam- or solvent-based studies, this paper is the first to utilize a MOO framework for systematically determining a specific optimal strategy for each heterogeneity scenario. With the advancement of continuous downhole fibre-optic monitoring, the outcomes can potentially be integrated into other real-time reservoir characterization and optimization work-flows.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
M. Li ◽  
N. Williams ◽  
S. Azarm

Sensitivity analysis has received significant attention in engineering design. While sensitivity analysis methods can be global, taking into account all variations, or local, taking into account small variations, they generally identify which uncertain parameters are most important and to what extent their effect might be on design performance. The extant methods do not, in general, tackle the question of which ranges of parameter uncertainty are most important or how to best allocate Investments to partial uncertainty reduction in parameters under a limited budget. More specifically, no previous approach has been reported that can handle single-disciplinary multi-output global sensitivity analysis for both a single design and multiple designs under interval uncertainty. Two new global uncertainty metrics, i.e., radius of output sensitivity region and multi-output entropy performance, are presented. With these metrics, a multi-objective optimization model is developed and solved to obtain fractional levels of parameter uncertainty reduction that provide the greatest payoff in system performance for the least amount of “Investment.” Two case studies of varying difficulty are presented to demonstrate the applicability of the proposed approach.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document