Unified Approach for Holonomic and Nonholonomic Systems Based on the Modified Hamilton’s Principle

Author(s):  
Keisuke Kamiya ◽  
Junya Morita ◽  
Yutaka Mizoguchi ◽  
Tatsuya Matsunaga

As basic principles for deriving the equations of motion for dynamical systems, there are d’Alembert’s principle and the principle of virtual power. From the former Hamilton’s principle and Langage’s equations are derived, which are powerful tool for deriving the equation of motion of mechanical systems since they can give the equations of motion from the scalar energy quantities. When Hamilton’s principle is applied to nonholonomic systems, however, care has to be taken. In this paper, a unified approach for holonomic and nonholonomic systems is discussed based on the modified Hamilton’s principle. In the present approach, constraints for both of the holonomic and nonholonomic systems are expressed in terms of time derivative of the position, and their variations are treated similarly to the principle of virtual power, i.e. time and position are fixed in operation with respect to the variations. The approach is applied to a holonomic and a simple nonholonomic systems.

Author(s):  
B. F. Feeny

D'Alembert's principle is manipulated in the presence of nonholonomic constraints to derive the principle of virtual power in nonholonomic form, and Lagrange's equations for nonholonomic systems. The Lagrangian equations had been expressed previously for conservative systems, derived by variational methods. The D'Alembert derivation confirms the roles of constrained and unconstrained Lagrangians directly by the presence of constrained and unconstrained velocities in D'Alembert's principle. The constrained form of nonconservative generalized forces is also determined for both particles and rigid bodies. An example is a rolling disk.


Author(s):  
Usik Lee ◽  
Joohong Kim

Abstract In this paper, a modal analysis method (MAM) is introduced for the active multi-layer laminate beams. Two types of active multi-layer laminate beams are considered: the elastic-viscoelastic-piezoelectric three-layer beams and the elastic-piezoelectric two-layer beams. The dynamics of the multi-layer laminate beams are represented by a set of fully coupled equations of motion, derived by using Hamilton’s principle. The exact eigenfunctions are spectrally formulated and the orthogonality of eigenfunctions is derived in a closed form. The present MAM is evaluated through some numerical examples. It is shown that the dynamic characteristics obtained by the present MAM certainly converge to the exact ones obtained by SEM as the number of eigenfunctions superposed in MAM is increased. The modal analysis results are also compared with the results obtained by FEM.


2010 ◽  
Vol 56 (197) ◽  
pp. 497-513 ◽  
Author(s):  
J.N. Bassis

AbstractIce-sheet modelers tend to be more familiar with the Newtonian, vectorial formulation of continuum mechanics, in which the motion of an ice sheet or glacier is determined by the balance of stresses acting on the ice at any instant in time. However, there is also an equivalent and alternative formulation of mechanics where the equations of motion are instead found by invoking a variational principle, often called Hamilton’s principle. In this study, we show that a slightly modified version of Hamilton’s principle can be used to derive the equations of ice-sheet motion. Moreover, Hamilton’s principle provides a pathway in which analytic and numeric approximations can be made directly to the variational principle using the Rayleigh–Ritz method. To this end, we use the Rayleigh–Ritz method to derive a variational principle describing the large-scale flow of ice sheets that stitches the shallow-ice and shallow-shelf approximations together. Numerical examples show that the approximation yields realistic steady-state ice-sheet configurations for a variety of basal tractions and sliding laws. Small parameter expansions show that the approximation reduces to the appropriate asymptotic limits of shallow ice and shallow stream for large and small values of the basal traction number.


1992 ◽  
Vol 59 (2S) ◽  
pp. S224-S229 ◽  
Author(s):  
Warren N. White ◽  
Srinivasan Venkatasubramanian ◽  
P. Michael Lynch ◽  
Chi-Lung D. Huang

Equations of motion of a thin, stranded elastic cable with an eccentric, attached mass and subject to aerodynamic loading are derived using Hamilton’s principle. Coupling between the translational and rotational degrees of freedom owing to inertia, elasticity, and stranded geometry are considered. By invoking simplifying assumptions, the equations of motion are reduced to those obtained previously by other researchers.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
John T. Foster

A variationally consistent approach to constrained rigid-body motion is presented that extends D'Alembert's principle in a way that has a form similar to Kane's equations. The method results in minimal equations of motion for both holonomic and nonholonomic systems without a priori consideration of preferential coordinates.


2000 ◽  
Vol 21 (1) ◽  
pp. 45-56
Author(s):  
Do Sanh

In [3, 4, 5] the form of equations of motion in holonomic coordinates has constructed. The equations obtained give an effective tool for investigating complicated systems. In the present paper the form of equations of motion is written in quasi-coordinates. These equations are solved with respect to quasi-accelerations, which allow to define the motion of a holonomic and nonholonomic systems by a closed set of algebraic – differential equations. The reaction forces of constraints imposed on the system under consideration are calculated by means of a simple algorithm. For illustrating the effectiveness of this form of equations an example is considered.


1997 ◽  
Vol 52 (8-9) ◽  
pp. 585-587
Author(s):  
Walter Nadler ◽  
Hans H. Diebner ◽  
Otto E. Rössler

Abstract A form of the Verlet-algorithm for the integration of Newton’s equations of motion is derived from Hamilton's principle in discretized space and time. It allows the computation of exactly time-reversible trajectories on a digital computer, offers the possibility of systematically investigating the effects of space discretization, and provides a criterion as to when a trajectory ceases to be physical.


Sign in / Sign up

Export Citation Format

Share Document