Optimal Level Set Vibration Control of Plate Structures

Author(s):  
Masoud Ansari ◽  
Amir Khajepour ◽  
Ebrahim Esmailzadeh

This research is motivated by the need for control of flexural vibrations of lightweight plates. It addresses application of the level set method in optimal control of vibrations in plate-like structures. One of the most commonly practiced methods in control of vibration is to apply constrained layer damping patches to the surface of a structure. In order to consider the weight efficiency of the structure, the best shape and locations of the patches should be determined to achieve the optimum vibration suppression with lowest amount of damping patch. A novel topology optimization approach is proposed that is capable of finding the optimum shape and locations of the patches simultaneously. A 2D cantilever plate, undergoing flexural vibrations, will be considered. The optimal damping set will be found in the structure, such that the lowest modal energy in the fundamental vibration mode of the system is achieved. The proposed level set topology optimization method shows capability of determining the optimum damping set in structures accurately.

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Kurt Maute ◽  
Anton Tkachuk ◽  
Jiangtao Wu ◽  
H. Jerry Qi ◽  
Zhen Ding ◽  
...  

Multimaterial polymer printers allow the placement of different material phases within a composite, where some or all of the materials may exhibit an active response. Utilizing the shape memory (SM) behavior of at least one of the material phases, active composites can be three-dimensional (3D) printed such that they deform from an initially flat plate into a curved structure. This paper introduces a topology optimization approach for finding the spatial arrangement of shape memory polymers (SMPs) within a passive matrix such that the composite assumes a target shape. The optimization approach combines a level set method (LSM) for describing the material layout and a generalized formulation of the extended finite-element method (XFEM) for predicting the response of the printed active composite (PAC). This combination of methods yields optimization results that can be directly printed without the need for additional postprocessing steps. Two multiphysics PAC models are introduced to describe the response of the composite. The models differ in the level of accuracy in approximating the residual strains generated by a thermomechanical programing process. Comparing XFEM predictions of the two PAC models against experimental results suggests that the models are sufficiently accurate for design purposes. The proposed optimization method is studied with examples where the target shapes correspond to a plate-bending type deformation and to a localized deformation. The optimized designs are 3D printed and the XFEM predictions are compared against experimental measurements. The design studies demonstrate the ability of the proposed optimization method to yield a crisp and highly resolved description of the optimized material layout that can be realized by 3D printing. As the complexity of the target shape increases, the optimal spatial arrangement of the material phases becomes less intuitive, highlighting the advantages of the proposed optimization method.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanpeng Fang ◽  
Lei Yao ◽  
Shuxia Tian ◽  
Junjian Hou

This paper presents microstructural topology optimization of viscoelastic materials for the plates with constrained layer damping (CLD) treatments. The design objective is to maximize modal loss factor of macrostructures, which is obtained by using the Modal Strain Energy (MSE) method. The microstructure of the viscoelastic damping layer is composed of 3D periodic unit cells. The effective elastic properties of the unit cell are obtained through the strain energy-based method. The density-based topology optimization is adopted to find optimal microstructures of viscoelastic materials. The design sensitivities of modal loss factor with respect to the design variables are analyzed and the design variables are updated by Method of Moving Asymptotes (MMA). Numerical examples are given to demonstrate the validity of the proposed optimization method. The effectiveness of the optimal design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to the plates with CLD treatments.


Author(s):  
Masoud Ansari ◽  
Amir Khajepour ◽  
Ebrahim Esmailzadeh

Vibration control has always been of great interest for many researchers in different fields, especially mechanical and civil engineering. One of the key elements in control of vibration is damper. One way of optimally suppressing unwanted vibrations is to find the best locations of the dampers in the structure, such that the highest dampening effect is achieved. This paper proposes a new approach that turns the conventional discrete optimization problem of optimal damper placement to a continuous topology optimization. In fact, instead of considering a few dampers and run the discrete optimization problem to find their best locations, the whole structure is considered to be connected to infinite numbers of dampers and level set topology optimization will be performed to determine the optimal damping set, while certain number of dampers are used, and the minimum energy for the system is achieved. This method has a few major advantages over the conventional methods, and can handle damper placement problem for complicated structures (systems) more accurately. The results, obtained in this research are very promising and show the capability of this method in finding the best damper location is structures.


2020 ◽  
Vol 7 (4) ◽  
pp. 514-526
Author(s):  
Zijun Wu ◽  
Shuting Wang ◽  
Renbin Xiao ◽  
Lianqing Yu

Abstract This paper develops a new topology optimization approach for minimal compliance problems based on the parameterized level set method in isogeometric analysis. Here, we choose the basis functions as level set functions. The design variables are obtained with Greville abscissae based on the corresponding collocation points. The zero-level set boundaries are derived from the level set function values of the interpolation points in all knot spans. In the optimization iteration process, the whole design domain is discretized into two types of subdomains around the zero-level set boundaries, undesign area with void materials and redesign domain with solid materials. To decrease the size of equations and the computational consumptions, only the solid material area is recalculated and the void material area is discarded according to the high accuracy of isogeometric analysis. Numerical examples demonstrate the validity of the proposed optimization method.


Author(s):  
Cheol Kim ◽  
Young-Geun Song

A small wrist-watch-like wearable electric energy harvester which can extract electricity from swinging motions of people’s arms while walking has been developed newly. The harvester consists of multiple vibrating piezoelectric cantilevered thin beams attached to a round central hub structure radially with tip masses. The cantilevers are made of a polycarbonate substrate beam, PMN-PT piezoelectric material on its both sides, and a high density tungsten tip mass. The swinging of a human arm with the harvester causes the bending deformations in each blade while walking and then produces electricity from strains in two piezoelectric layers. The swinging motion was formulated mathematically and kinematically in terms of swinging angles, angular velocities and accelerations. Finite element analysis was used to model the cantilevered beams and calculate the voltage output. The optimum shape of piezoelectric layers were calculated on the basis of the topology optimization method specialized for piezoelectric materials.


Sign in / Sign up

Export Citation Format

Share Document