Dynamics of a System of Two Coupled Oscillators Which are Driven by a Third Oscillator

Author(s):  
Lauren Lazarus ◽  
Richard Rand

Analytical and numerical methods are applied to a pair of coupled nonidentical phase-only oscillators, where each is driven by the same independent third oscillator. The presence of numerous bifurcation curves defines parameter regions with 2, 4, or 6 solutions corresponding to phase locking. In all cases, only one solution is stable. Elsewhere, phase locking to the driver does not occur, but the average frequencies of the drifting oscillators are in the ratio of m:n. These behaviors are shown analytically to exist in the case of no coupling, and are identified using numerical integration when coupling is included.

2015 ◽  
Vol 62 (3-4) ◽  
pp. 101-119 ◽  
Author(s):  
Wojciech Artichowicz ◽  
Dzmitry Prybytak

AbstractIn this paper, energy slope averaging in the one-dimensional steady gradually varied flow model is considered. For this purpose, different methods of averaging the energy slope between cross-sections are used. The most popular are arithmetic, geometric, harmonic and hydraulic means. However, from the formal viewpoint, the application of different averaging formulas results in different numerical integration formulas. This study examines the basic properties of numerical methods resulting from different types of averaging.


1993 ◽  
Vol 04 (02) ◽  
pp. 385-392 ◽  
Author(s):  
J. M. SANZ-SERNA ◽  
M. P. CALVO

We consider symplectic methods for the numerical integration of Hamiltonian problems, i.e. methods that preserve the Poincaré integral invariants. Examples of symplectic methods are given and numerical experiments are reported.


2012 ◽  
Vol 107 (7) ◽  
pp. 2020-2031 ◽  
Author(s):  
Ryan T. Canolty ◽  
Charles F. Cadieu ◽  
Kilian Koepsell ◽  
Karunesh Ganguly ◽  
Robert T. Knight ◽  
...  

Oscillatory phase coupling within large-scale brain networks is a topic of increasing interest within systems, cognitive, and theoretical neuroscience. Evidence shows that brain rhythms play a role in controlling neuronal excitability and response modulation (Haider B, McCormick D. Neuron 62: 171–189, 2009) and regulate the efficacy of communication between cortical regions (Fries P. Trends Cogn Sci 9: 474–480, 2005) and distinct spatiotemporal scales (Canolty RT, Knight RT. Trends Cogn Sci 14: 506–515, 2010). In this view, anatomically connected brain areas form the scaffolding upon which neuronal oscillations rapidly create and dissolve transient functional networks (Lakatos P, Karmos G, Mehta A, Ulbert I, Schroeder C. Science 320: 110–113, 2008). Importantly, testing these hypotheses requires methods designed to accurately reflect dynamic changes in multivariate phase coupling within brain networks. Unfortunately, phase coupling between neurophysiological signals is commonly investigated using suboptimal techniques. Here we describe how a recently developed probabilistic model, phase coupling estimation (PCE; Cadieu C, Koepsell K Neural Comput 44: 3107–3126, 2010), can be used to investigate changes in multivariate phase coupling, and we detail the advantages of this model over the commonly employed phase-locking value (PLV; Lachaux JP, Rodriguez E, Martinerie J, Varela F. Human Brain Map 8: 194–208, 1999). We show that the N-dimensional PCE is a natural generalization of the inherently bivariate PLV. Using simulations, we show that PCE accurately captures both direct and indirect (network mediated) coupling between network elements in situations where PLV produces erroneous results. We present empirical results on recordings from humans and nonhuman primates and show that the PCE-estimated coupling values are different from those using the bivariate PLV. Critically on these empirical recordings, PCE output tends to be sparser than the PLVs, indicating fewer significant interactions and perhaps a more parsimonious description of the data. Finally, the physical interpretation of PCE parameters is straightforward: the PCE parameters correspond to interaction terms in a network of coupled oscillators. Forward modeling of a network of coupled oscillators with parameters estimated by PCE generates synthetic data with statistical characteristics identical to empirical signals. Given these advantages over the PLV, PCE is a useful tool for investigating multivariate phase coupling in distributed brain networks.


2011 ◽  
Vol 107 (10) ◽  
Author(s):  
J. Thévenin ◽  
M. Romanelli ◽  
M. Vallet ◽  
M. Brunel ◽  
T. Erneux

2008 ◽  
Vol 100 (2) ◽  
Author(s):  
Vardit Eckhouse ◽  
Moti Fridman ◽  
Nir Davidson ◽  
Asher A. Friesem

2020 ◽  
Author(s):  
Jeremi Ochab

A modified Kuramoto model of synchronization in a finite discrete system of locally coupled oscillators is studied. The model consists of N oscillators with random natural frequencies arranged on a ring. It is shown analytically and numerically that finite-size systems may have many different synchronized stable solutions which are characterised by different values of the winding number. The lower bound for the critical coupling $k_c$ is given, as well as an algorithm for its exact calculation. It is shown that in general phase-locking does not lead to phase coherence in 1D.


Author(s):  
Juan A. Conesa

Research abounds in the literature on kinetic analyses using thermogravimetric (TG) runs. Many of these studies use approximations of integral or derivative forms of the kinetic law and all of them use programmed temperature, not the actual temperature measured by thermocouples close to the sample. In addition, it is common to conduct a single run in order to perform the calculation. Nevertheless, many authors consider that numerical methods should be used to analyse the kinetics of decomposition. In such cases, the actual temperature is used and, generally, several runs are fitted using the same kinetic parameters, giving robustness to the results. In the present work, a numerical integration procedure was discussed and applied to different examples. We focused on materials presenting a single decomposition curve as well as other materials with more complex processes. Different examples were explored, and the methodology was applied to a number of wastes such as coffee husks, polystyrene and polyethylene.


1993 ◽  
Vol 134 ◽  
pp. 333-341
Author(s):  
Y. Tanaka

AbstractModal coupling oscillation models for the stellar radial pulsation and coupled-oscillators are reviewed. Coupled-oscillators with the second-order and third-order terms seemed to behave non-systematically. Using the equation by Schwarzschild and Savedoff (1949) with the dissipation term of van del Pol’s type which is third-order, we demonstrate the effect of each term. The effects can be understood by the terms of the nonlinear dynamics, which is recently developing, that is. phase-locking, quasi-periodicity, period doubling, and chaos. As the problem of stellar pulsation, especially of double-mode cepheids on the period-ratio, we examine the dependence on the stellar structure from which the coupling constants in the second-order terms are derived. Eigen functions for adiabatic pulsations had been used for the calculation of the constants. It is noted that only two set of the constants are available, that is, for the polytrope model with n = 3 and a cepheid model without convection. Some examples of nonlinear dynamical effects will be shown.It is shown that if the constants were suitable values, the period-ratio of double-mode cepheids is probably realized. The possibility is briefly suggested.


Sign in / Sign up

Export Citation Format

Share Document