Dynamics of a 3D Micropolar Beam Model

Author(s):  
Soroosh Hassanpour ◽  
G. R. Heppler

The development of a simplified micropolar beam model is presented and the governing dynamic equations for a micropolar beam deforming in 3D space, under different types of external loading and boundary conditions are derived. The dynamic equations are derived from Hamilton’s principle and the finite element method is used to provide numerical examples. The modal behavior of the developed micropolar beam model and the conditions under which the results of classical beam models will be recovered are presented.

2018 ◽  
Vol 55 (1) ◽  
pp. 1-4
Author(s):  
Elena Felicia Beznea ◽  
Ionel Chirica ◽  
Adrian Presura ◽  
Ionel Iacob

The paper is treating the strength analysis of the main deck structure of an inland navigation catamaran for 30 passengers. The main deck should have high stiffness and high strength to resist to external loading and endure high stresses from combined bending and torsion loads. Different materials for sandwich structure of the deck have been analysed by using the Finite Element Method in order to determine the solution which accomplish better designing criteria regarding allowable stress and deformations and total weight.


Author(s):  
Soroosh Hassanpour ◽  
G. R. Heppler

This paper is devoted to the dynamic modeling of micropolar gyroelastic beams and explores some of the modeling and analysis issues related to them. The simplified micropolar beam torsion and bending theories are used to derive the governing dynamic equations of micropolar gyroelastic beams from Hamilton’s principle. Then these equations are solved numerically by utilizing the finite element method and are used to study the spectral and modal behaviour of micropolar gyroelastic beams.


Author(s):  
P. J. Moss ◽  
A. J. Carr

Some of the aspects involved in modelling frame-panel interaction by computer methods are discussed. These include the different types of infill and their strength and failure properties, the forces of interaction, and methods for handling material nonlinearity.
 The use of the finite element method to implement the analysis is described and examples are presented to illustrate the application of the method.


2018 ◽  
Vol 35 (4) ◽  
pp. 465-474 ◽  
Author(s):  
L. Liu ◽  
H. Jiang ◽  
Y. Dong ◽  
L. Quan ◽  
Y. Tong

ABSTRACTFlexibility is a particularly important biomechanical property for intracranial vascular stents. To study the flexibility of stent, the following work was carried out by using the finite element method: Four mechanical models were adopted to simulate the bending deformation of stents, and comparative studies were conducted about the distinction between cantilever beam and simply supported beam, as well as the distinction between moment-loading method and displacement-loading method. A complete process as implanting a stent including compressing, expanding and bending was also simulated, for analyzing the effects of compressing and expanding deformation on stent flexibility. At the same time, the effects of the arrangement and the number of bridges on stent flexibility were researched. The results show that: 1. A same flexibility index was obtained from cantilever beam model and simply supported beam model; displacement-loading method is better than moment-loading for simulating the bending deformation of stents. 2. The flexibility of stent with compressing and expanding deformation is lower than that in the initial form. 3. Crossly arranging the neighboring bridges in axial direction, can effectively improve the stent flexibility and reduce the flexibility difference in various bending directions; the bridge number, has proportional non-linear correlation with the stent rigidity as well as the maximum moment required for bending the stent.


2010 ◽  
Vol 152-153 ◽  
pp. 279-283
Author(s):  
Run Bo Bai ◽  
Fu Sheng Liu ◽  
Zong Mei Xu

Contact problem, which exists widely in mechanical engineering, civil engineering, manufacturing engineering, etc., is an extremely complicated nonlinear problem. It is usually solved by the finite element method. Unlike with the traditional finite element method, it is necessary to set up contact elements for the contact analysis. In the different types of contact elements, the Goodman joint elements, which cover the surface of contacted bodies with zero thickness, are widely used. However, there are some debates on the characteristics of the attached elements of the Goodman joint elements. For that this paper studies the type, matching, and meshing of the attached elements. The results from this paper would be helpful for the finite element contact analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Li Tian ◽  
Dai Xiaoxia ◽  
Zhang Chengwei

We propose two algorithms for elliptic boundary value problems in shape optimization. With the finite element method, the optimization problem is replaced by a discrete variational problem. We give rules and use them to decide which elements are to be reserved. Those rules are determined by the optimization; as a result, we get the optimal design in shape. Numerical examples are provided to show the effectiveness of our algorithms.


Author(s):  
Evgeniya M. Tupikova

The aim of the work. The static analysis and comparison of the results for translational shells under equally distributed load of dead weight are provided. The shells of the similar general dimensions in plan and rise of four different types: translation of catenary along catenary, circle along circle, ellipse along ellipse and sinusoid along sinusoid are investigated. Methods. The finite element method was applied for the analysis. The research was conducted for the shells of material of reinforced concrete characteristics. Results. The comparison has shown that shells of catenary and circle translation surface demonstrate the most advantageous behavior under loading; the worst results for reinforced concrete were got for ellipse along ellipse translation shell. The peculiarities of each type behavior were revealed, that is of interest for their prospective reduction to practice of structural design.


2012 ◽  
Vol 60 (2) ◽  
pp. 215-222 ◽  
Author(s):  
A. Długosz ◽  
T. Burczyński

Abstract. In present paper an improved multi-objective evolutionary algorithm is used for Pareto optimization of selected coupled problems. Coupling of mechanical, electrical and thermal fields is considered. Boundary-value problems of the thermo-elasticity, piezoelectricity and electro-thermo-elasticity are solved by means of finite element method (FEM). Ansys Multiphysics and MSC.Mentat/Marc software are used to solve considered coupled problems. Suitable interfaces between optimization tool and the FEM software are created. Different types of functionals are formulated on the basis of results obtained from the coupled field analysis. Functionals depending on the area or volume of the structure are also proposed. Parametric curves NURBS are used to model some optimized structures. Numerical examples for exemplary three-objective optimization are presented in the paper.


Author(s):  
C T F Ross ◽  
T Johns

Ten thin-walled domes, of hemi-ellipsoidal form, were vibrated in air and while partially and fully submerged in water. The domes varied in shape from oblate ones of aspect ratio (AR) 0.25 to prolate ones of aspect ratio 4. The fundamental modal patterns for the oblate domes tended to be of axisymmetric form, while the fundamental modal patterns of the hemispherical and prolate domes tended to be of asymmetric or lobar form. The theoretical analysis was carried out by the finite element method, where the motion of the shell structure was represented by three different types of element and the motion of the water was represented by a solid annular element. Comparison between theory and experiment was found to be good.


Sign in / Sign up

Export Citation Format

Share Document