Optimal Sensor Placement Using Chaotic Monkey Search Algorithm

Author(s):  
Fuli Zhang ◽  
Olga Brezhneva ◽  
Amit Shukla

The optimal sensor placement (OSP) problem is integral to modern large scale structures for their health monitoring. Evolutionary algorithms for the OSP problem are attractive as they can result in global optima without gradient information. In this paper, a modification of the Monkey Algorithm with a chaotic search strategy and adaptive parameters is proposed. It includes chaotic initialization, variable search step length, and adaptive watching time. The performance of the proposed chaotic Monkey Algorithm (cMA) is compared with the original Monkey Algorithm. Convergence property of cMA is established. The proposed method is applied to an optimal sensor placement problem for structural health monitoring. The OSP problem is solved for a mass-spring-damper system and then for a model of the I-40 bridge developed by the Los Alamos National Laboratory. Numerical results demonstrate that the proposed Chaotic Monkey Algorithm has capability of solving mixed-variable optimization problems and that it performs better than the originally proposed Monkey algorithm. Finally, nonparametric uncertainty modeling is used to evaluate variability in a model and its effect on the optimal sensor placement.

2020 ◽  
pp. 136943322094719
Author(s):  
Xianrong Qin ◽  
Pengming Zhan ◽  
Chuanqiang Yu ◽  
Qing Zhang ◽  
Yuantao Sun

Optimal sensor placement is an important component of a reliability structural health monitoring system for a large-scale complex structure. However, the current research mainly focuses on optimizing sensor placement problem for structures without any initial sensor layout. In some cases, the experienced engineers will first determine the key position of whole structure must place sensors, that is, initial sensor layout. Moreover, current genetic algorithm or partheno-genetic algorithm will change the position of the initial sensor locations in the iterative process, so it is unadaptable for optimal sensor placement problem based on initial sensor layout. In this article, an optimal sensor placement method based on initial sensor layout using improved partheno-genetic algorithm is proposed. First, some improved genetic operations of partheno-genetic algorithm for sensor placement optimization with initial sensor layout are presented, such as segmented swap, reverse and insert operator to avoid the change of initial sensor locations. Then, the objective function for optimal sensor placement problem is presented based on modal assurance criterion, modal energy criterion, and sensor placement cost. At last, the effectiveness and reliability of the proposed method are validated by a numerical example of a quayside container crane. Furthermore, the sensor placement result with the proposed method is better than that with effective independence method without initial sensor layout and the traditional partheno-genetic algorithm.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Ting-Hua Yi ◽  
Hong-Nan Li ◽  
Ming Gu

Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. Based on the criterion of the OSP for the modal test, an improved genetic algorithm, called “generalized genetic algorithm (GGA)”, is adopted to find the optimal placement of sensors. The dual-structure coding method instead of binary coding method is proposed to code the solution. Accordingly, the dual-structure coding-based selection scheme, crossover strategy and mutation mechanism are given in detail. The tallest building in the north of China is implemented to demonstrate the feasibility and effectiveness of the GGA. The sensor placements obtained by the GGA are compared with those by exiting genetic algorithm, which shows that the GGA can improve the convergence of the algorithm and get the better placement scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Gao ◽  
Zhihui Bai ◽  
Yubo Song

Structural health monitoring (SHM) is essential when detecting damage in large and complex structures in order to provide a comprehensive assessment of the structural health state. Optimal sensor placement (OSP) is critical in the structural health monitoring system, which aims to use a limited number of sensors to obtain high-quality structural health diagnosis data. However, the current research mainly focuses on OSP for structures, without considering the values contributed by different modes to the bridge structure. In this article, an optimal sensor placement method based on initial sensor layout, using the dynamic adjustment of attenuation factor gravitational search algorithm (DGSA), is proposed. The effective modal mass participation ratio is introduced to ensure the validity of the initial data of optimal sensor placement. In view of the insufficient developmental ability of the gravitational search algorithm, the attenuation factor α adjusted dynamically aids the global search in the early iteration and the local fine search in the late iteration. The double coding method is used to apply the DGSA algorithm to OSP; taking cable-stayed bridges as an example, the feasibility of the algorithm is verified. The results show that the improved algorithm has a good optimization ability and can accurately and efficiently determine the optimal placement of sensors.


2017 ◽  
Vol 140 ◽  
pp. 213-224 ◽  
Author(s):  
Chen Yang ◽  
Xuepan Zhang ◽  
Xiaoqi Huang ◽  
ZhengAi Cheng ◽  
Xinghua Zhang ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7710
Author(s):  
Tsung-Yueh Lin ◽  
Jin Tao ◽  
Hsin-Haou Huang

The objective of optimal sensor placement in a dynamic system is to obtain a sensor layout that provides as much information as possible for structural health monitoring (SHM). Whereas most studies use only one modal assurance criterion for SHM, this work considers two additional metrics, signal redundancy and noise ratio, combining into three optimization objectives: Linear independence of mode shapes, dynamic information redundancy, and vibration response signal strength. A modified multiobjective evolutionary algorithm was combined with particle swarm optimization to explore the optimal solution sets. In the final determination, a multiobjective decision-making (MODM) strategy based on distance measurement was used to optimize the aforementioned objectives. We applied it to a reduced finite-element beam model of a reference building and compared it with other selection methods. The results indicated that MODM suitably balanced the objective functions and outperformed the compared methods. We further constructed a three-story frame structure for experimentally validating the effectiveness of the proposed algorithm. The results indicated that complete structural modal information can be effectively obtained by applying the MODM approach to identify sensor locations.


2010 ◽  
Author(s):  
Gwendolyn W. van der Linden ◽  
Abbas Emami-Naeini ◽  
Robert L. Kosut ◽  
Hassan Sederat ◽  
Jerome P. Lynch

2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Tung Tran The ◽  
Sy Nguyen Quoc ◽  
Dieu Vo Ngoc

This paper proposes the Symbiotic Organism Search (SOS) algorithm to find the optimal network configuration and the placement of distributed generation (DG) units that minimize the real power loss in radial distribution networks. The proposed algorithm simulates symbiotic relationships such as mutualism, commensalism, and parasitism for solving the optimization problems. In the optimization process, the reconfiguration problem produces a large number of infeasible network configurations. To reduce these infeasible individuals and ensure the radial topology of the network, the graph theory was applied during the power flow. The implementation of the proposed SOS algorithm was carried out on 33-bus, 69-bus, 84-bus, and 119-bus distribution networks considering seven different scenarios. Simulation results and performance comparison with other optimization methods showed that the SOS-based approach was very effective in solving the network reconfiguration and DG placement problems, especially for complex and large-scale distribution networks.


2020 ◽  
Vol 14 (6) ◽  
pp. 1351-1380
Author(s):  
Sakthivel V.P. ◽  
Suman M. ◽  
Sathya P.D.

Purpose Economic load dispatch (ELD) is one of the crucial optimization problems in power system planning and operation. The ELD problem with valve point loading (VPL) and multi-fuel options (MFO) is defined as a non-smooth and non-convex optimization problem with equality and inequality constraints, which obliges an efficient heuristic strategy to be addressed. The purpose of this study is to present a new and powerful heuristic optimization technique (HOT) named as squirrel search algorithm (SSA) to solve non-convex ELD problems of large-scale power plants. Design/methodology/approach The suggested SSA approach is aimed to minimize the total fuel cost consumption of power plant considering their generation values as decision variables while satisfying the problem constraints. It confers a solution to the ELD issue by anchoring with foraging behavior of squirrels based on the dynamic jumping and gliding strategies. Furthermore, a heuristic approach and selection rules are used in SSA to handle the constraints appropriately. Findings Empirical results authenticate the superior performance of SSA technique by validating on four different large-scale systems. Comparing SSA with other HOTs, numerical results depict its proficiencies with high-qualitative solution and by its excellent computational efficiency to solve the ELD problems with non-smooth fuel cost function addressing the VPL and MFO. Moreover, the non-parametric tests prove the robustness and efficacy of the suggested SSA and demonstrate that it can be used as a competent optimizer for solving the real-world large-scale non-convex ELD problems. Practical implications This study has compared various HOTs to determine optimal generation scheduling for large-scale ELD problems. Consequently, its comparative analysis will be beneficial to power engineers for accurate generation planning. Originality/value To the best of the authors’ knowledge, this manuscript is the first research work of using SSA approach for solving ELD problems. Consequently, the solution to this problem configures the key contribution of this paper.


Sign in / Sign up

Export Citation Format

Share Document