Feature Recognition and Parameterization Methods for Algorithm-Based Product Development Process

Author(s):  
Thiago Weber Martins ◽  
Reiner Anderl

The algorithm-based product development process applies mathematical optimization tools in the conceptual steps of the product development process. It relies on formalized data such as initial loads and boundary conditions to find the best product solution for optimized bifurcated sheet metal parts. Previous research efforts focused on the automation of CAD modeling steps. Current algorithms are able to generate the CAD models of optimized bifurcated sheet metal products automatically, however, they are rough with low-level of detail and abstraction. Consequently, CAD models are embodied and detailed manually in a partly iterative and time-consuming process to include parameters, constraints and design features. Hence, this paper introduces feature recognition and parametrization methods for the algorithm-based product development of bifurcated sheet metal products. It proposes the inclusion of a pre-processor to analyze the solution graph resulted from topology optimization before the generation of CAD models. Algorithms that derive the geometric shape from the solution graph by recognizing features as well as assigning parameters are introduced. Then, feature-based CAD models of bifurcated sheet metal products are automatically generated. The proposed methods and algorithms are implemented with Python and validated with a use-case. Benefits and limitations of the proposed methods are discussed.

Author(s):  
Thiago Weber Martins ◽  
Christian Steinmetz ◽  
Katharina Albrecht ◽  
Reiner Anderl

Within the Collaborative Research Center 666 the algorithm based product development process has been established. It is based on state of the art product development methodologies and enhanced in order to optimize the product development process of integral bifurcated sheet metal parts. Algorithms based on mathematical optimization approaches as well as the initial product requirements and constraints information are applied to obtain an optimized design as CAD-Model. Regarding this methodology there are still some challenges to be solved, such as reduction of iterations steps to elaborate final product design as CAD-model, use of heterogeneous data as well as software and enhancement of information exchange. Therefore, this paper introduces a concept for a web-based application to support the algorithmic product development methodology and CAD modeling in CRC 666. It enables the development and adaptation of integral bifurcated parts based on the initial optimization data provided by XML-files. Besides the description of use cases and use scenarios, the concept is implemented as a web-based application for validation purposes. Based on the validation, advantages and limitations of the presented approach are discussed.


Author(s):  
Thiago Weber Martins ◽  
Katharina Albrecht ◽  
Reiner Anderl

The Collaborative Research Centre 666 has the focus on researching fundamental new methods for the development of optimized products and production processes for integral bifurcated sheet metal parts. Technological innovations have been achieved with respect to new production processes such as linear flow splitting and linear bend splitting as well as to produce products with flexible profiles. The use of state of art product development methodologies can be applied but these are not optimized to deal with the high complexity of the requirements and properties of integral bifurcated sheet metal products. In order to deal with that complexity a new approach of a product development methodology, the algorithm based product development process, has been established. Within the scope of the algorithm based product development methodology a topology optimization, based on mathematical algorithms using product requirements information, is already applied in the conceptual steps of product development process. By using this methodological approach an optimized concept of bifurcated sheet metal can be determined. The results are stored as optimized geometric data in XML-format files. 3D-CAD-Models are generated based on these data. However the import of these data into 3D-CAD-Systems are not fully automated. The developed data model, from earlier works for linear flow splitting and linear bend splitting, does not take into account the variability of the profiles in the third-dimension. In addition the topology optimization does not provide production-orientated design requirements and therefore it does not take into account the production process limits (of linear flow splitting and linear bend splitting). Hence 3D-CAD-Models resulting from the optimized geometric data need to be adapted manually. Therefore new advanced approaches in terms of virtual product development tools need to be explored. This paper describes the development of an interface within the CAD-System Siemens NX which supports the automatic import of XML-files containing the optimized geometric data of non-linear integral bifurcated sheet metal in 3D-CAD-Models. The existing data model is extended considering the requirements of the developed interface in order to represent nonlinear bifurcated profiles. An approach of the interface using the described data model and the NX Open API is introduced and explained.


Author(s):  
Marcus Sandberg ◽  
Tobias Larsson

Automating redesign is an approach for engineering designers to prevent design related manufacturability problems in early product development and thus reduce costly design iterations. A vast amount of work exists, with most research findings seemingly staying within the research community rather than finding its way into use in industrial settings where research issues have often evolved from the concerned applied research. The aim of this paper is to present an approach with industrial implementation potential regarding automating redesign of sheet-metal components in early product development to avoid manufacturing problems due to design flaws and non-optimal designs. Geometry, generated by a knowledge-based engineering (KBE) system, gives input to the case-based reasoning (CBR) governed manufacturing planning. If geometry is found non-manufacturable or enhancement of already manufacturable geometry is possible, the CBR system will suggest redesign actions to resolve the problem. CBR extends the capabilities of the rule-based KBE-system by enabling plan-based evaluation. The approach has the potential for industrial implementation, since KBE is often closely coupled to an industrial CAD-system, hence enabling technology is at the industry. Also, combining KBE and CBR reduces the coding effort compared to coding the whole design support with CBR, as feature recognition is simplified by means of KBE. A case study of development of sheet-metal manufactured parts at a Swedish automotive industry partner presents the method in use. As it is shown that redesign can be automated for sheet-metal parts there is a potential for reducing costly design and manufacturing iterations.


Author(s):  
Loris Barbieri ◽  
Fabio Bruno ◽  
Maurizio Muzzupappa ◽  
Umberto Cugini

The problem of integrating topological optimization tools in product development process (PDP) is becoming more and more urgent since nowadays they are widely employed in several engineering fields (civil, aeronautics, aerospace, automotive). The interest for these tools is due to their capacity to better mechanical properties through a global optimization of the product in terms of weight, stiffness, resistance and cost. In particular, there is a lack of specific tools for automatic feature recognition on voxel models generated by the topological optimization tools. Our paper presents an innovative methodology that allows the integration of topological optimizers in the product development process by means of a wise and rational knowledge management and an efficient data exchange between different systems. The target has been reached through the implementation of CAD automation modules which decrease the working time and give the possibility to effectively schematize the designer’s knowledge.


Author(s):  
Andrea CAPRA ◽  
Ana BERGER ◽  
Daniela SZABLUK ◽  
Manuela OLIVEIRA

An accurate understanding of users' needs is essential for the development of innovative products. This article presents an exploratory method of user centered research in the context of the design process of technological products, conceived from the demands of a large information technology company. The method is oriented - but not restricted - to the initial stages of the product development process, and uses low-resolution prototypes and simulations of interactions, allowing users to imagine themselves in a future context through fictitious environments and scenarios in the ambit of ideation. The method is effective in identifying the requirements of the experience related to the product’s usage and allows rapid iteration on existing assumptions and greater exploration of design concepts that emerge throughout the investigation.


Sign in / Sign up

Export Citation Format

Share Document