flow splitting
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 3)

Abstract The Sea of Japan (SOJ) coast and adjoining orography of central Honshu, Japan receive substantial snowfall each winter. A frequent contributor during cold-air outbreaks (CAOs) is the Japan Sea Polar-Airmass Convergence Zone (JPCZ), which forms downstream of the Korean Highlands, extends southeastward to Honshu, and generates a mesoscale band of precipitation. Mesoscale polar vortices (MPVs) ranging in horizontal scale from tens (i.e., meso-β-scale cyclones) to several hundred kilometers (i.e., “polar lows”) are also common during CAOs and often interact with the JPCZ. Here we use satellite imagery and Weather Research and Forecast model (WRF) simulations to examine the formation, thermodynamic structure, and airflow of a JPCZ that formed in the wake of an MPV during a CAO from 2–7 February 2018. The MPV and its associated warm seclusion and bent-back front developed in a locally warm, convergent, and convective environment over the SOJ near the base of the Korean Peninsula. The nascent JPCZ was structurally continuous with the bent-back front and lengthened as the MPV migrated southeastward. Trajectories illustrate how flow splitting around the Korean Highlands, channeling through low passes and valleys along the Asian coast, and air-sea interactions affect the formation and thermodynamic structure of the JPCZ. Contrasts in airmass origin and thermodynamic modification over the SOJ affect the cross-JPCZ temperature gradient, which reverses in sign along the JPCZ from the Asian coast to Honshu. These results provide new insights into the thermodynamic structure of the JPCZ, which is an important contributor to hazardous weather over Japan.


2021 ◽  
Author(s):  
Neil Lareau ◽  
Nicholas Nauslar ◽  
Evan Bentley ◽  
Matthew Roberts ◽  
Sammuel Emmerson ◽  
...  

Fire-generated tornadic vortices (FGTVs) linked to pyrocumulonimbi (pyroCb) are a potentially deadly, yet poorly understood and seldom observed wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high impact wildfires during the 2020 fire season in California, USA. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s-1 (60 kts), vortex depths of up to 5 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated meso-scale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep-pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form.


2021 ◽  
Author(s):  
Neil Lareau ◽  
Nicholas Nauslar ◽  
Evan Bentley ◽  
Matthew Roberts ◽  
Sammuel Emmerson ◽  
...  

Fire-generated tornadic vortices (FGTVs) linked to pyrocumulonimbi (pyroCb) are a potentially deadly, yet poorly understood and seldom observed wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high impact wildfires during the 2020 fire season in California, USA. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s-1 (60 kts), vortex depths of up to 5 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated meso-scale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep-pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form.


2021 ◽  
Author(s):  
Margarida Belo-Pereira ◽  
João Santos

<p>The Madeira International Airport (MIA) lies on the island south-eastern coast and it is known to be exposed to wind hazards. A link between these adverse winds at MIA and the synoptic-scale circulation is established using a weather type (WT) classification. From April to September (summer period), five WTs prevail, cumulatively representing nearly 70% of days. These WTs reflect the presence of well-established Azores high, with some variations on location and strength. Although with a low frequency of occurrence (<5%), this anticyclone occasionally strengthens and extends towards Iberia, inducing anomalously strong NNE/NE up to 3-5 km over Madeira. The most severe and longer-lasting wind conditions at the MIA, with a higher frequency of gusts above 35 kt, are driven by this synoptic-scale pattern and are more common in summer. An episode of adverse winds at the MIA is analyzed, illustrating the occurrence of upstream stagnation, flow splitting, and lee wake formation. The upstream conditions include a low-level inversion, strong NNE/NE winds near and above the inversion and a Froude number less than 1. AROME model predicted the occurrence of downslope winds, in association with a large-amplitude mountain wave. At this time, the strongest wind gusts were registered and a missed approach occurred. The wind regime in different places of the island suggests that these conditions are relatively frequent, mostly in summer. Lastly, this study provides an objective verification of the AROME wind forecasts, for a 3-year period and from June to August.</p>


2021 ◽  
pp. 1-28
Author(s):  
Viktor Vasilievich Val'ko ◽  
Nikita Olegovych Savenko ◽  
Anton Alekseevich Bay

In this paper, we discuss computational experiments based on the “AUSM” stream splitting methods. The efficiency of using various pressure approximations for flow splitting according to the original AUSM method is shown. The proposed use of splitting is tested on one-dimensional and three-dimensional problems. Partial use of the flow splitting method, only in terms of pressure, is proposed to be used in the calculations of the Euler system on unstructured grids. A variant of the application of the method of strong deceleration of the flow in the calculations of the flow around obtuse bodies is considered. The algorithm of the method for calculating flows with an extended stagnation zone, within which the Mach numbers decrease to about ~ 0.1, is investigated. Comparison with high-precision methods based on the solution of the Riemann problem is given.


2020 ◽  
Vol 228 ◽  
pp. 116000
Author(s):  
Lele Yang ◽  
Jing Wang ◽  
Yunhua Jiang ◽  
Li Zou

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1257
Author(s):  
Margarida Belo-Pereira ◽  
João A. Santos

The Madeira International Airport (MIA) lies on the island’s south-eastern coast and it is known to be exposed to wind hazards. A link between these adverse winds at MIA and the synoptic-scale circulation is established using a weather type (WT) classification. From April to September (summer period), five WTs prevail, cumulatively representing nearly 70% of days. These WTs reflect the presence of well-established Azores high, with some variations on location and strength. Although with a low frequency of occurrence (<5%), this anticyclone occasionally strengthens and extends towards Iberia, inducing anomalously strong NNE/NE up to 3–5 km over Madeira. The most severe and longer-lasting wind conditions at the MIA, with a higher frequency of gusts above 35 kt, are driven by this synoptic-scale pattern and are more common in summer. An episode of adverse winds at the MIA is analysed, illustrating the occurrence of upstream stagnation, flow splitting, and lee wake formation. The upstream conditions include a low-level inversion, strong NNE/NE winds near and above the inversion and a Froude number less than 1. The AROME (Application of Research to Operations at Mesoscale) model predicted the occurrence of downslope winds, in association with a large-amplitude mountain wave. At this time, the strongest wind gusts were registered and one aircraft executed a missed approach. The wind regime in different places of the island suggests that these conditions are relatively frequent, mostly in summer. Finally, objective verification of AROME wind forecast, for a three-year period and from June to August, is discussed.


2020 ◽  
Author(s):  
Adam Szmelter ◽  
Jason Jacob ◽  
David Eddington

ABSTRACTOxygen concentration varies tremendously within the body and has proven to be a critical variable in cell differentiation, proliferation, and drug metabolism among many other physiological processes. Currently, researchers study the gas’s role in biology using low-throughput gas-control incubators or hypoxia chambers in which all cells in a vessel are exposed to a single oxygen concentration. Here, we introduce a device which can simultaneously deliver 12 unique oxygen concentrations to cells in a 96-well plate and seamlessly integrate into biomedical research workflows. The device inserts into 96-well plates and delivers gas to the headspace thus avoiding undesirable contact with media. This simple approach isolates each well using gas-tight pressure resistant gaskets effectively creating 96 “mini-incubators”. Each of the twelve columns of the plate is supplied by a distinct oxygen concentration from a gas-mixing gradient generator supplied by two feed gases. The wells within each column are then supplied by an equal flow-splitting distribution network. Using equal feed flow rates, concentrations ranging from 0.6% to 20.5% were generated within a single plate. A549 lung carcinoma cells were then used to show that O2 levels below 9% caused a stepwise increase in cell death for cells treated with the hypoxia-activated anti-cancer drug Tirapirizamine (TPZ). Additionally, the 96-well plate was further leveraged to simultaneously test multiple TPZ concentrations over an oxygen gradient and generate a 3D dose response landscape. The results presented here show how microfluidic technologies can be integrated into, rather than replace, ubiquitous biomedical labware allowing for increased throughput oxygen studies.


2020 ◽  
Vol 35 (35) ◽  
pp. 2050289
Author(s):  
Pengcheng Li ◽  
Yongjia Wang ◽  
Jan Steinheimer ◽  
Qingfeng Li ◽  
Hongfei Zhang

The difference in elliptic flow between protons and antiprotons, produced in [Formula: see text] collisions at center-of-mass energies [Formula: see text], is studied within a modified version of the ultra-relativistic quantum molecular dynamics (UrQMD) model. Two different model scenarios are compared: the cascade mode and the mean field mode which includes potential interactions for both formed and pre-formed hadrons. The model results for the elliptic flow of protons and the relative elliptic flow difference between protons and antiprotons obtained from the mean field mode agree with the available experimental data, while the elliptic flow difference is near zero for the cascade mode. Our results show that the elliptic flow splitting, observed for particles and antiparticles, can be explained by the inclusion of proper hadronic interactions. In addition, the difference in elliptic flow between protons and antiprotons depends on the centrality and the rapidity window. With smaller centrality and/or rapidity acceptance, the observed elliptic flow splitting is more sensitive to the beam energy, indicating a strong net baryon density dependence of the effect. We propose to confirm this splitting at the upcoming experiments from Beam Energy Scan (BES) Phase-II at Relativistic Heavy Ion Collider (RHIC), the Compressed Baryonic Matter (CBM) at Facility for Antiproton and Ion Research (FAIR), High Intensity heavy ion Accelerator Facility (HIAF) and Nuclotron-based Ion Collider fAcility (NICA).


Sign in / Sign up

Export Citation Format

Share Document