Real-Time Modeling to Enable Hardware-in-the-Loop Simulation of Plug-In Electric Vehicle-Grid Interaction

Author(s):  
Chong Cao ◽  
Luting Wang ◽  
Bo Chen ◽  
Jason Harper ◽  
Theodore Bohn ◽  
...  

Real-Time simulation and Hardware-in-the-Loop (HIL) testing are increasingly adopted by industry for the development and validation of complex systems. This paper presents the real-time modeling and power management of a Vehicle-Grid Integration (VGI) system. The VGI system consists of six AC level 2 Plug-in Electric Vehicle (PEV) charging stations, a Photovoltaics (PV) farm, a commercial building load, and a switch connecting to 240V single phase power grid. PEV charging activities follow the SAE J1772 standard. An energy management algorithm is designed for the VGI system to coordinate the PEV charging with the building load and PV renewable generation. The coordination maintains the power consumption of the VGI system below utility’s demand charge pricing threshold. A real-time power system simulator, Opal-RT, is used in this study. The OPAL-RT system allows users to build detailed power system models using Matlab Simulink/SimPowerSystems and RT-LAB library, and run the models in real-time. The model-based approach enables the integration of power system models seamlessly with the power management algorithm and power electronics-level controllers. The simulation results show that the VGI model emulates the real system well and the coordinated PEV charging helps to balance the power generation and consumption of the VGI system to meet power management requirement.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2471
Author(s):  
Tommaso Bradde ◽  
Samuel Chevalier ◽  
Marco De Stefano ◽  
Stefano Grivet-Talocia ◽  
Luca Daniel

This paper develops a predictive modeling algorithm, denoted as Real-Time Vector Fitting (RTVF), which is capable of approximating the real-time linearized dynamics of multi-input multi-output (MIMO) dynamical systems via rational transfer function matrices. Based on a generalization of the well-known Time-Domain Vector Fitting (TDVF) algorithm, RTVF is suitable for online modeling of dynamical systems which experience both initial-state decay contributions in the measured output signals and concurrently active input signals. These adaptations were specifically contrived to meet the needs currently present in the electrical power systems community, where real-time modeling of low frequency power system dynamics is becoming an increasingly coveted tool by power system operators. After introducing and validating the RTVF scheme on synthetic test cases, this paper presents a series of numerical tests on high-order closed-loop generator systems in the IEEE 39-bus test system.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 593
Author(s):  
Moiz Muhammad ◽  
Holger Behrends ◽  
Stefan Geißendörfer ◽  
Karsten von Maydell ◽  
Carsten Agert

With increasing changes in the contemporary energy system, it becomes essential to test the autonomous control strategies for distributed energy resources in a controlled environment to investigate power grid stability. Power hardware-in-the-loop (PHIL) concept is an efficient approach for such evaluations in which a virtually simulated power grid is interfaced to a real hardware device. This strongly coupled software-hardware system introduces obstacles that need attention for smooth operation of the laboratory setup to validate robust control algorithms for decentralized grids. This paper presents a novel methodology and its implementation to develop a test-bench for a real-time PHIL simulation of a typical power distribution grid to study the dynamic behavior of the real power components in connection with the simulated grid. The application of hybrid simulation in a single software environment is realized to model the power grid which obviates the need to simulate the complete grid with a lower discretized sample-time. As an outcome, an environment is established interconnecting the virtual model to the real-world devices. The inaccuracies linked to the power components are examined at length and consequently a suitable compensation strategy is devised to improve the performance of the hardware under test (HUT). Finally, the compensation strategy is also validated through a simulation scenario.


Author(s):  
Marek Michalczuk ◽  
Bartlomiej Ufnalski ◽  
Lech M. Grzesiak

Purpose – The purpose of this paper is to provide high-efficiency and high-power hybrid energy source for an urban electric vehicle. A power management strategy based on fuzzy logic has been introduced for battery-ultracapacitor (UC) energy storage. Design/methodology/approach – The paper describes the design and construction of on-board hybrid source. The proposed energy storage system consists of battery, UCs and two DC/DC interleaved converters interfacing both storages. A fuzzy-logic controller (FLC) for the hybrid energy source is developed and discussed. Control structure has been tested using a non-mobile experimental setup. Findings – The hybrid energy storage ensures high-power ability. Flexibility and robustness offered by the FLC give an easy accessible method to provide a power management algorithm extended with additional input information from road infrastructure or other vehicles. In the presented research, it was examined that using information related to the topography of the road in the control structure helps to improve hybrid storage performance. Research limitations/implications – The proposed control algorithm is about to be validated also in an experimental car. Originality/value – Exploratory studies have been provided to investigate the benefits of energy storage hybridization for electric vehicle. Simulation and experimental results confirm that the combination of lithium batteries and UCs improves performance and reliability of the energy source. To reduce power impulses drawn from the battery, power management algorithm takes into consideration information on slope of a terrain.


Sign in / Sign up

Export Citation Format

Share Document