Chattering-Free Finite-Time Stability of a Class of Fractional-Order Nonlinear Systems

Author(s):  
Bin Wang ◽  
Yangquan Chen ◽  
Ying Yang

Abstract This paper studies the chattering-free finite-time control for a class of fractional-order nonlinear systems. First, a class of fractional-order nonlinear systems with external disturbances is presented. Second, a new finite-time terminal sliding mode control method is proposed for the stability control of a class of fractional-order nonlinear systems by combining the finite-time stability theory and sliding mode control scheme. Third, by designing a controller with a differential form and introducing the arc tangent function, the chattering phenomenon is well suppressed. Additionally, a controller is developed to resist external disturbances. Finally, numerical simulations are implemented to demonstrate the feasibility and validity of the proposed method.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jingfei Jiang ◽  
Hongkui Li ◽  
Kun Zhao ◽  
Dengqing Cao ◽  
Juan L. G. Guirao

AbstractThis paper deals with the finite time stability and control for a class of uncertain variable fractional order nonlinear systems. The variable fractional Lyapunov direct method is developed to provide the basis for the stability proof of the system considered. The sliding mode control method is applied for robust control of uncertain variable fractional order systems; furthermore, the chattering phenomenon is avoided. And the finite time stability of the systems under control law is proved based on the proposed stability criterion. Finally, numerical simulations are proposed and the efficiency of the controller is verified.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Sign in / Sign up

Export Citation Format

Share Document