A Literature Review of Design Decision Making in Disruptive Technological Innovations of New Products

Author(s):  
Mikhail Y. Nikolaev ◽  
Clement Fortin

Abstract This paper reviews the information available on specifics of the design decision-making process for the case of disruptive technological innovations associated with new products and systems. It defines the term “disruptive technological innovation,” provides with the explanation of decision-making methodology peculiarities for this type of innovation, and describes currently existing techniques and tools to support design decision making in case of disruptive technological innovations. The current paper relates to decision making in systems engineering and design, and therefore deals with the design decision making. The terms “disruptive technologies” and “disruptive innovations” appeared at the end of the 1990s. Researchers frequently mention disruptive innovations and technologies in the description of technical products for different industries: aircraft, automotive, food, petroleum, etc. A disruptive technological innovation is defined as a combination of disruptive technology and disruptive innovation. A new product can be relatively a simple device like an unmanned aerial vehicle and a smartphone, or a complex system like a modern aerospace vehicle or a space information network. Being an innovative developed product, it possesses peculiarities influencing the product development phase of the product lifecycle design decision-making process and accompanying supporting techniques and tools. This review investigates the specifics of design decision making of disruptive technologically innovative products that influence different stages of the product development phase in their product lifecycles. The paper combines aspects of systems engineering with innovation theory, key elements of the design of complex systems, and highlights the product development phase of the product lifecycle design decision-making process.

2021 ◽  
Author(s):  
Marc Aurel Schnabel ◽  
Shuva Chowdhury

No description supplied


2021 ◽  
Author(s):  
Marc Aurel Schnabel ◽  
Shuva Chowdhury

No description supplied


2008 ◽  
Vol 11 (6) ◽  
pp. A413-A414 ◽  
Author(s):  
S Bartoli ◽  
R Tarricone ◽  
S Benussi ◽  
P Stefano ◽  
G Marinelli

Author(s):  
Shun Takai

This paper investigates a multidisciplinary framework that simulates design decisions in a complex team-based product development in which engineers simultaneously work in a team project and individual projects. The proposed framework integrates cooperative and noncooperative design models with (1) equilibrium analysis, (2) uncertainty modeling based on behavioral game-theory results, and (3) decision-making using decision analysis. In the proposed framework, noncooperative design is used to simulate engineers’ decisions about team project commitment and to analyze potential free-riding; cooperative design is used to model design outcomes when engineers collaborate in the team project; equilibrium analysis and behavioral game-theory results are used to infer about other engineers’ decisions; and decision analysis is used to calculate expected values of decision alternatives. The proposed framework and the design decision-making model are illustrated using a pressure vessel design as a team project conducted by two engineers: a design engineer and a materials engineer.


2019 ◽  
Vol 11 (8) ◽  
pp. 2342 ◽  
Author(s):  
Kao ◽  
Nawata ◽  
Huang

Technological innovations are regarded as the tools that can stimulate economic growth and the sustainable development of technology. In recent years, as technologies based on the internet of things (IoT) have rapidly developed, a number of applications based on IoT innovations have emerged and have been widely adopted by various public and private sectors. Applications of IoT in the manufacturing industry, such as manufacturing intelligence, not only play a significant role in the enhancement of industrial competitiveness and sustainability, but also influence the diffusion of innovative applications that are based on IoT innovations. It is crucial for policy makers to understand these potential reasons for stimulating IoT industrial sustainability, as they can facilitate industrial competitiveness and technological innovations using supportive means, such as government procurement and financial incentives. Therefore, there is a need to ascertain different factors that may affect IoT industrial sustainability and further explore the relationship between these factors. However, finding a set of factors that affects IoT industrial sustainability is not easy. Recently, the robustness of a theoretical framework, termed the technological innovation system (TIS), has been verified and has been used to explore and analyze technological and industrial development. Thus, it is suitable for this research to use this theoretical model. In order to find out appropriate factors and accurately analyze the causality among factors that influence IoT industrial sustainability, this research presents a Bayesian rough Multiple Criteria Decision Making (MCDM) model based on TIS functions by integrating random forest (RF), decision making trial and evaluation (DEMATEL), Bayesian theory, and rough interval numbers. The proposed analytical framework is validated by an empirical case of defining the causality between TIS functions to enable the industrial sustainability of IoT in the Taiwanese smart manufacturing industry. Based on the empirical study results, the cause group consists of entrepreneurial activities, knowledge development, market formation, and resource mobilization. The effect group is composed of knowledge diffusion through networks’ guidance of the search, and creation of legitimacy. Moreover, the analytical results also provide several policy suggestions promoting IoT industrial sustainability that can serve as the basis for defining innovation policy tools for Taiwan and late coming economies.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Shun Takai

This paper investigates a multidisciplinary framework that simulates design decisions in a complex team-based product development in which engineers simultaneously work on a team project and individual projects. The proposed framework integrates collaborative design with (1) equilibrium analysis, (2) uncertainty modeling based on behavioral game-theory results, and (3) noncooperative decision making using decision analysis. In the proposed framework, noncooperative decision making is used to simulate engineers’ decisions about team-project commitment and to analyze potential free riding. Collaborative design is used to model design outcomes when engineers commit to the team project. Equilibrium analysis and behavioral game-theory results are used to infer uncertainty about other engineers’ decisions. Decision analysis is used to calculate expected values of decision alternatives. The proposed framework and the design decision making model are illustrated using a pressure vessel design as a team project conducted by two engineers: a design engineer and a materials engineer.


Sign in / Sign up

Export Citation Format

Share Document