Volume 4: 20th Design for Manufacturing and the Life Cycle Conference; 9th International Conference on Micro- and Nanosystems
Latest Publications


TOTAL DOCUMENTS

98
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857113

Author(s):  
Jian Zhou ◽  
Ronald N. Miles ◽  
Shahrzad Towfighian

Conventional capacitive sensing places significant limitations on the sensor design due to the pull-in instability caused by the electrostatic force. The main purpose of this study is to examine a low-cost novel capacitive sensing principle based on electrostatic balance which promises to avoid these design limitations. The approach uses an asymmetric electric field on a structure with fingers that can generate a repulsive force while the gap is low and create an attractive force while the gap is large. The size and thickness of the fingers are also responsible for creating repulsive or attractive forces on the structure. This approach has recently been applied successfully in the design of capacitive actuators to provide a repulsive driving force. A new design principle for capacitive sensing is described that avoids pull-in instability by designing the fingers such that the structure is at the equilibrium.



Author(s):  
Matthew L. Dering ◽  
Conrad S. Tucker

The authors of this work present a computer vision approach that discovers and classifies objects in a video stream, towards an automated system for managing End of Life (EOL) waste streams. Currently, the sorting stage of EOL waste management is an extremely manual and tedious process that increases the costs of EOL options and minimizes its attractiveness as a profitable enterprise solution. There have been a wide range of EOL methodologies proposed in the engineering design community that focus on determining the optimal EOL strategies of reuse, recycle, remanufacturing and resynthesis. However, many of these methodologies assume a product/component disassembly cost based on human labor, which hereby increases the cost of EOL waste management. For example, recent EOL options such as resynthesis, rely heavily on the optimal sorting and combining of components in a novel way to form new products. This process however, requires considerable manual labor that may make this option less attractive, given products with highly complex interactions and components. To mitigate these challenges, the authors propose a computer vision system that takes live video streams of incoming EOL waste and i) automatically identifies and classifies products/components of interest and ii) predicts the EOL process that will be needed for a given product/component that is classified. A case study involving an EOL waste stream video is used to demonstrate the predictive accuracy of the proposed methodology in identifying and classifying EOL objects.



Author(s):  
Shun Takai

This paper investigates a multidisciplinary framework that simulates design decisions in a complex team-based product development in which engineers simultaneously work in a team project and individual projects. The proposed framework integrates cooperative and noncooperative design models with (1) equilibrium analysis, (2) uncertainty modeling based on behavioral game-theory results, and (3) decision-making using decision analysis. In the proposed framework, noncooperative design is used to simulate engineers’ decisions about team project commitment and to analyze potential free-riding; cooperative design is used to model design outcomes when engineers collaborate in the team project; equilibrium analysis and behavioral game-theory results are used to infer about other engineers’ decisions; and decision analysis is used to calculate expected values of decision alternatives. The proposed framework and the design decision-making model are illustrated using a pressure vessel design as a team project conducted by two engineers: a design engineer and a materials engineer.



Author(s):  
Mostafa Sabbaghi ◽  
Behzad Esmaeilian ◽  
Ardeshir Raihanian Mashhadi ◽  
Willie Cade ◽  
Sara Behdad

Product reuse is a recommended action toward sustainability. However, the profitable reusability of End-of-Use or End-of-Life (EoU/L) products depends on how consumers have used them over the initial lifecycles and what are their EoU conditions. In addition to consumers’ behavior, product design features such as product durability has an impact on the future reusability. In this paper, a data set of Lithium-ion laptop batteries has been studied with the aim of investigating the potential reusability of laptop batteries. This type of rechargeable batteries is popular due to their energy efficiency and high reliability. Therefore, understanding the lifetime of these batteries and improving the recycling process is becoming important. In this paper, the reusability assessment is linked to the consumer behavior and degradation process simultaneously through monitoring the performance of batteries over their lifetimes. After capturing the utilization behavior, the performance-based stability time of batteries is approximately derived. Consequently, the Reusability Likelihood of batteries is quantified using the number of cycles that the battery can be charged with the aim of facilitating future remarketing and recovery opportunities.



Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper deals with Casimir and van der Waals effects on the frequency response of parametric resonance of electrostatically actuated NEMS circular plates for bio-sensing applications. The bio-NEMS resonator consists of a clamped circular elastic plate over a fixed electrode plate. A soft AC voltage of frequency near natural frequency between the plates gives an electrostatic force that leads the elastic plate into vibration which leads to parametric resonance that can be used afterwards for biosensing purposes. Frequency response and the effects of Casimir, and van der Waals forces on the response are reported.



Author(s):  
Michael Mitnovitsky ◽  
Miri Weiss Cohen ◽  
Moshe Shpitalni

This paper examines a flexible job shop problem that considers dynamic events, such as stochastic job arrivals, uncertain processing times, unexpected machine breakdowns and the possibility of processing flexibility. To achieve this goal, a new agent-based adaptive control system has been developed at the factory level, along with advanced decision-making strategies that provide responsive factories with adaptation and reconfiguration capabilities and advanced complementary scheduling abilities. The aim is to facilitate operational flexibility and increase productivity as well as offer strategic advantages such as analysis of factory development options by simulation. The feasibility of the proposed system is demonstrated by simulation under various experimental settings, among them shop utilization level, due date tightness and breakdown level.



Author(s):  
Nick Cramer ◽  
Janet Chao ◽  
Travis Tollefson ◽  
M. Teodorescu

According the American Cancer Society’s data, in 2013, an estimated 53,640 people developed head and neck cancers [1], which accounts for about 3% to 5% of all cancers in the United States. Removing head and neck malignant neoplasms is one of the first stages towards patient recovery. However, these types of invasive procedures often lead to disfiguring scars and resections with functional and aesthetical drawbacks (see Figure 1).



Author(s):  
Giovanni Legnani ◽  
Andrea Gabrielli ◽  
Abdelmajid Ousdad ◽  
Irene Fassi ◽  
Serena Ruggeri ◽  
...  

The paper describes a new laser device conceived for surface scanning and more specifically for mini robot calibrations. The system is based on a laser triangulation sensor which is moved by an extremely accurate device to collect a set of 3D points lying on surfaces. If the surfaces belong to the gripper of a robot that must be calibrated and a sufficient number of points of this gripper are collected, the pose of the robot can be measured. If the robot is moved to several different configurations and the gripper poses are measured for each of them, it is possible to reconstruct the kinematics of the robot and calibrate it. The paper presents the theory and describes the design, tests and calibration of the laser instrumentation with a focus on the first experimental results. These results are obtained in a working cell including a vision system, a 4-dof (xyz,θ) mini robot and a 2-dof rotating platform.



Author(s):  
Junfeng Ma ◽  
Gül E. Okudan Kremer

Sustainability has been the emphasis of intense discussion over recent decades, but mostly focused on addressing critical aspects of environmental issues. An increasing awareness of social responsibilities and ever-shifting customer requirements have led manufacturers to consider social sustainability during the design phase in tandem with addressing environmental concerns; thus, design for social sustainability has evolved as a new product design direction. Modular product design (MPD), has been widely used in both academia and industry because of its significant benefits in design engineering. Because of the potential synergy, investigating design for social sustainability in association with MPD holds promise as a field of investigation. In this paper, we introduce a novel MPD approach that uses the elements of key component specification and product impact on social sustainability. The key components carry core technologies or have the highest sustainability effects in a product (i.e., the most costly or environmentally polluting parts). Product competitiveness strongly relies on a few key components that should be a focal point during product development. However, to the best of our knowledge, key components have not been well addressed in modular product design. In this paper, we employ labor time as an indicator to measure social sustainability. A heuristic-based clustering algorithm with labor time optimization is developed to categorize components into modules. A coffee-maker case study is conducted to demonstrate the applicability of the proposed methodology.



Sign in / Sign up

Export Citation Format

Share Document