Non-Smooth Dynamics and Non-Classical Bifurcations in Impulse-Impact Oscillators

Author(s):  
Stefano Lenci ◽  
Giuseppe Rega

Abstract Some aspects of the nonlinear dynamics of an impulse-impact oscillator are investigated. After an initial description of the prototype mechanical model used to illustrate the results, attention is paid to the classical local and global bifurcations which are at the base of the changes of dynamical regime. Some non-classical phenomena due to the particular nature of the investigated system are then considered. At a local level, it is shown that periodic solutions may appear (or disappear) through a non-classical bifurcation which involves synchronization of impulses and impacts. Similarities and differences with the classical bifurcations are discussed. At a global level, the effects of the non-continuity of the orbits in the phase space on the basins of attraction topology are investigated. It is shown how this property is at the base of a non-classical homoclinic bifurcation where the homoclinic points disappear after the first touch between the stable and unstable manifolds.

2005 ◽  
Vol 15 (08) ◽  
pp. 2411-2432 ◽  
Author(s):  
HONGJUN CAO ◽  
GUANRONG CHEN

A comprehensive resonant optimal control method is developed and discussed for suppressing homoclinic and heteroclinic bifurcations of a general one-degree-of-freedom nonlinear oscillator. Based on an adjustable phase shift, the primary resonant optimal control method is presented. By solving an optimization problem for the optimal amplitude coefficients to be used as the control parameters, the force term as the controller can be designed. Three kinds of resonant optimal control methods are compared. The control mechanism of the primary resonant optimal control method is to enlarge to the largest possible degree the control region where homoclinic and/or heteroclinic transversal intersections do not occur, and this is accomplished at lowest cost. It is shown that the primary resonant optimal control method has much better performance than the superharmonic resonant optimal control method, and it works well even when the superharmonic optimal control method fails. In particular, one new global optimal control method is presented, whose central idea is to find a frequency such that the asymmetric homoclinic bifurcations or the multiple homoclinic and heteroclinic bifurcations can attain the same critical values. On the basis of these same critical bifurcation values, chaos resulting from asymmetric homoclinic or multiple homoclinic and heteroclinic bifurcations can be effectively suppressed by the primary resonant optimal control method. This is confirmed by two illustrative examples. The theoretical analyses concerning the suppression of local and global homoclinic and heteroclinic bifurcations are in agreement with the numerical simulations, including the identification of the stable and unstable manifolds and the basins of attraction.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850169
Author(s):  
Lingli Xie

According to the theory of stable and unstable manifolds of an equilibrium point, we firstly find out some geometrical properties of orbits on the stable and unstable manifolds of a saddle point under some brief conditions of nonlinear terms composed of polynomials for [Formula: see text]-dimensional time continuous system. These properties show that the orbits on stable and unstable manifolds of the saddle point will stay on the corresponding stable and unstable subspaces in the [Formula: see text]-neighborhood of the saddle point. Furthermore, the necessary conditions of existence for orbit homoclinic to a saddle point are exposed. Some examples including homoclinic bifurcation are given to indicate the application of the results. Finally, the conclusions are presented.


2014 ◽  
Vol 36 (1) ◽  
pp. 23-63 ◽  
Author(s):  
VAUGHN CLIMENHAGA ◽  
YAKOV PESIN

We prove several new versions of the Hadamard–Perron theorem, which relates infinitesimal dynamics to local dynamics for a sequence of local diffeomorphisms, and in particular establishes the existence of local stable and unstable manifolds. Our results imply the classical Hadamard–Perron theorem in both its uniform and non-uniform versions, but also apply much more generally. We introduce a notion of ‘effective hyperbolicity’ and show that if the rate of effective hyperbolicity is asymptotically positive, then the local manifolds are well behaved with positive asymptotic frequency. By applying effective hyperbolicity to finite-orbit segments, we prove a closing lemma whose conditions can be verified with a finite amount of information.


Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.


Author(s):  
Alexander F. Vakakis

Abstract The splitting of the stable and unstable manifolds of the rapidly forced Duffing oscillator with negative stiffness is investigated. The method used relies on the computation of analytic approximations for the orbits on the perturbed manifolds, and the asymptotic approximation of these orbits by successive integrations by parts. It is shown, that the splitting of the manifolds becomes exponentially small as the perturbation parameter tends to zero, and that the estimate for the splitting distance given by the Melnikov Integral dominates over high order corrections.


2019 ◽  
Vol 20 (02) ◽  
pp. 2050013
Author(s):  
Alexandra Neamţu

We establish the existence of random stable and unstable manifolds for ill-posed stochastic partial differential equations (SPDEs). Namely, we assume that the linear part does not generate a [Formula: see text]-semigroup. Using the theory of integrated semigroups, we are able to analyze the long-time behavior of random dynamical systems generated by such SPDEs.


2010 ◽  
Vol 17 (1) ◽  
pp. 1-36 ◽  
Author(s):  
M. Branicki ◽  
S. Wiggins

Abstract. We consider issues associated with the Lagrangian characterisation of flow structures arising in aperiodically time-dependent vector fields that are only known on a finite time interval. A major motivation for the consideration of this problem arises from the desire to study transport and mixing problems in geophysical flows where the flow is obtained from a numerical solution, on a finite space-time grid, of an appropriate partial differential equation model for the velocity field. Of particular interest is the characterisation, location, and evolution of transport barriers in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian transport has to account for the effects of transient flow phenomena which are not captured by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE) fields and associated Lagrangian coherent structures have been the main tools for characterising transport barriers in the time-aperiodic situation. In this paper we consider a variety of examples, some with explicit solutions, that illustrate in a concrete manner the issues and phenomena that arise in the setting of finite-time dynamical systems. Of particular significance for geophysical applications is the notion of flow transition which occurs when finite-time hyperbolicity is lost or gained. The phenomena discovered and analysed in our examples point the way to a variety of directions for rigorous mathematical research in this rapidly developing and important area of dynamical systems theory.


Sign in / Sign up

Export Citation Format

Share Document