analytic approximations
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 22)

H-INDEX

24
(FIVE YEARS 3)

Micro ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 54-67
Author(s):  
Richard Syms ◽  
Dixi Liu

Analytic approximations are presented for the response of buckling-mode electrothermal actuators with very slender beams with a width-to-length ratio of W/L≤0.001 of the type found in nanoelectromechanical systems (NEMS). The results are found as closed-form solutions to the Euler beam bending theory rather than by an iterative numerical solution or a time-consuming finite element analysis. Expressions for transverse deflections and stiffness are presented for actuators with the common raised cosine and chevron pre-buckled shapes. The approximations are valid when the effects of bending dominate over those of axial compression. A few higher-order approximations are also presented for less slender beams with 0.001≤W/L≤0.01.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Patrick Draper ◽  
Isabel Garcia Garcia ◽  
Benjamin Lillard

Abstract Bubbles of nothing are a class of vacuum decay processes present in some theories with compactified extra dimensions. We investigate the existence and properties of bubbles of nothing in models where the scalar pseudomoduli controlling the size of the extra dimensions are stabilized at positive vacuum energy, which is a necessary feature of any realistic model. We map the construction of bubbles of nothing to a four-dimensional Coleman-De Luccia problem and establish necessary conditions on the asymptotic behavior of the scalar potential for the existence of suitable solutions. We perform detailed analyses in the context of five-dimensional theories with metastable dS4× S1 vacua, using analytic approximations and numerical methods to calculate the decay rate. We find that bubbles of nothing sometimes exist in potentials with no ordinary Coleman-De Luccia decay process, and that in the examples we study, when both processes exist, the bubble of nothing decay rate is typically faster. Our methods can be generalized to other stabilizing potentials and internal manifolds.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012030
Author(s):  
I V Demidov ◽  
A Y Potekhin

Abstract Magnetar atmospheres can contain a substantial fraction of once-ionized helium. At the magnetic fields about 1014 −1015 G, typical of magnetars, Landau quantization is important not only for the electrons, but also for the centre-of-mass (CM) motion of the He+ ion. The CM and internal motions are mutually dependent, which complicates theoretical studies of the He+ characteristics. We present asymptotic analytic expressions for the binding energies, oscillator strengths, and photoionization cross sections of the moving hydrogenlike ions in an ultra-strong magnetic field, which can be used to construct approximate models of magnetar atmospheres.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Julian Heeck ◽  
Arvind Rajaraman ◽  
Rebecca Riley ◽  
Christopher B. Verhaaren

Abstract Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this frame-work to include a Proca mass for the gauge boson, which can arise either from spontaneous symmetry breaking or via the Stückelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 106
Author(s):  
Valerio Bozza ◽  
Silvia Pietroni ◽  
Chiara Melchiorre

We investigated binary lenses with 1/rn potentials in the asymmetric case with two lenses with different indexes n and m. These kinds of potentials have been widely used in several contexts, ranging from galaxies with halos described by different power laws to lensing by wormholes or exotic matter. In this paper, we present a complete atlas of critical curves and caustics for mixed binaries, starting from the equal-strength case, and then exploring unequal-strength systems. We also calculate the transitions between all different topology regimes. Finally we find some useful analytic approximations for the wide binary case and for the extreme unequal-strength case.


2020 ◽  
Author(s):  
Ernesto Berríos-Caro ◽  
Tobias Galla ◽  
George W. A. Constable

While facultative sex is common in sexually reproducing species, for reasons of tractability most mathematical models assume that such sex is asynchronous in the population. In this paper, we develop a model of switching environments to instead capture the effect of an entire population transitioning synchronously between sexual and asexual modes of reproduction. We use this model to investigate the evolution of the number of self-incompatible mating types in finite populations, which empirically can range from two to thousands. When environmental switching is fast, we recover the results of earlier studies that implicitly assumed populations were engaged in asynchronous sexual reproduction. However when the environment switches slowly, we see deviations from previous asynchronous theory, including a lower number of mating types at equilibrium and bimodality in the stationary distribution of mating types. We provide analytic approximations for both the fast and slow switching regimes, as well as a numerical scheme based on the Kolmogorov equations for the system to quickly evaluate the model dynamics at intermediate parameters. Our approach exploits properties of integer partitions in number theory. We also demonstrate how additional biological processes such as selective sweeps can be accounted for in this switching environment framework, showing that beneficial mutations can further erode mating type diversity in synchronous facultatively sexual populations.


2020 ◽  
Vol 497 (1) ◽  
pp. 19-36 ◽  
Author(s):  
James A Kwiecinski

ABSTRACT Motivated by the observation of comets and asteroids rotating in non-principal axis (NPA) states, we investigate the relaxation of a freely precessing triaxial ellipsoidal rotator towards its lowest energy spin state. Relaxation of the precession arises from internal dissipative stresses generated by self-gravitation and inertial forces from spin. We develop a general theory to determine the viscoelastic stresses in the rotator, under any linear rheology, for both long-axis (LAM) and short-axis (SAM) modes. By the methods of continuum mechanics, we calculate the power dissipated by the stress field and the viscoelastic material strain, which enables us to determine the time-scale of the precession dampening. To illustrate how the theory is used, we apply our framework to a triaxial 1I/2017 (‘Oumuamua) and 4179 Toutatis under the Maxwell regime. For the former, employing viscoelastic parameters typical of very cold monolithic asteroids renders a dampening time-scale longer by a factor of 1010 and higher than the time-scales found in the works relying on the $\, Q$-factor approach, while the latter yields a time-scale shorter by 107 as a consequence of including self-gravitation. We further reduce our triaxial theory to bodies of an oblate geometry and derive a family of relatively simple analytic approximations determining the NPA dampening times for Maxwell rotators, as well as a criterion determining whether self-gravitation is negligible in the relaxation process. Our approximations exhibit a relative error no larger than $0.2{{\ \rm per\ cent}}$, when compared to numerical integration, for close to non-dissipative bodies and $0.003{{\ \rm per\ cent}}$ for moderately to highly energy dissipating rotators.


2020 ◽  
Vol 496 (2) ◽  
pp. 2098-2106
Author(s):  
Bart F A van Baal ◽  
Frank R N Chambers ◽  
Anna L Watts

ABSTRACT Waves in thin fluid layers are important in various stellar and planetary problems. Due to rapid rotation such systems will become oblate, with a latitudinal variation in the gravitational acceleration across the surface of the object. In the case of accreting neutron stars, rapid rotation could lead to a polar radius smaller than the equatorial radius by a factor ∼0.8. We investigate how the oblateness and a changing gravitational acceleration affect different hydrodynamic modes that exist in such fluid layers through analytic approximations and numerical calculations. The wave vectors of g modes and Yanai modes increase for more oblate systems compared to spherical counterparts, although the impact of variations in the changing gravitational acceleration is effectively negligible. We find that for increased oblateness, Kelvin modes show less equatorial confinement and little change in their wave vector. For r modes, we find that for more oblate systems the wave vector decreases. The exact manner of these changes for the r modes depends on the model for the gravitational acceleration across the surface.


Author(s):  
Mark Brown ◽  
Erol Peköz ◽  
Sheldon Ross

Many cryptocurrencies including Bitcoin are susceptible to a so-called double-spend attack, where someone dishonestly attempts to reverse a recently confirmed transaction. The duration and likelihood of success of such an attack depends on the recency of the transaction and the computational power of the attacker, and these can be related to the distribution of time for counts from one Poisson process to exceed counts from another by some desired amount. We derive an exact expression for this distribution and show how it can be used to obtain efficient simulation estimators. We also give closed-form analytic approximations and illustrate their accuracy.


Sign in / Sign up

Export Citation Format

Share Document