Global Analysis of the Double Impact Oscillator Dynamics

Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighbourhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally and the real value of the restitution coefficient is determined by this method.

Author(s):  
František Peterka

Abstract The double impact oscillator represents two symmetrically arranged single impact oscillators. It is the model of a forming machine, which does not spread the impact impulses into its neighborhood. The anti-phase impact motion of this system has the identical dynamics as the single system. The in-phase motion and the influence of asymmetries of the system parameters are studied using numerical simulations. Theoretical and simulation results are verified experimentally.


Author(s):  
Amit Banerjee ◽  
Issam Abu Mahfouz

The use of non-classical evolutionary optimization techniques such as genetic algorithms, differential evolution, swarm optimization and genetic programming to solve the inverse problem of parameter identification of dynamical systems leading to chaotic states has been gaining popularity in recent years. In this paper, three popular evolutionary algorithms — differential evolution, particle swarm optimization and the firefly algorithm are used for parameter identification of a clearance-coupled-impact oscillator system. The behavior of impacting systems is highly nonlinear exhibiting a myriad of harmonic, low order and high order sub-harmonic resonances, as well as chaotic vibrations. The time-history simulations of the single-degree-of-freedom impact oscillator were obtained by the Neumark-β numerical integration algorithm. The results are illustrated by bifurcation graphs, state space portraits and Poincare’ maps which gives valuable insights on the dynamics of the impact system. The parameter identification problem relates to finding one set of system parameters given a chaotic or periodic system response as a set of Poincaré points and a different but known set of system parameters. The three evolutionary algorithms are compared over a set of parameter identification problems. The algorithms are compared based on solution quality to evaluate the efficacy of using one algorithm over another.


2020 ◽  
Author(s):  
Elena Pasternak ◽  
Arcady Dyskin

<p>Hydraulic fractures and the natural fractures in rock masses are closed by the in-situ compressive stress such that their opposite faces are in contact either with each other or with the proppant in hydraulic fractures or with gouge in the natural fractures. Subsequently, a pressure increase can produce negligible deformation in already closed fractures as compared to the deformation associated with the opening caused by sufficiently large tensile stress. This suggests a simple model of closed fracture as a bilinear spring with a certain stiffness in tension and a very high (potentially infinite) stiffness in compression. Therefore the oscillations of fractures can be reduced to the oscillations of a bilinear oscillator or impact oscillator [1] when the compressive stiffness considerably exceeds the tensile one. We use the simplest model of the impact oscillator with preload representing the action of the in-situ compressive stress. Based on this model, two sets of multiple resonances are identified and the reaction to impulsive load is determined. The harmonics of free oscillations are calculated. The knowledge of the first two harmonics is sufficient to recover the tensile stiffness and hence identify the geometric parameters of the fracture. The results of the research contribute to the development of the methods of fracture reconstruction and the hydraulic fracture monitoring.</p><ol><li>Dyskin, A.V., E. Pasternak and E. Pelinovsky, 2012. Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration 331(12) 2856-2873. ISBN/ISSN 0022-460X, 04/06/2012.</li> </ol><p><strong>Acknowledgements</strong>. The authors acknowledge support from the Australian Research Council through project DP190103260. AVD acknowledges the support from the School of Civil and Transportation, Faculty of Engineering, Beijing University of Civil Engineering and Architecture.</p>


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Firas Turki ◽  
Hassène Gritli ◽  
Safya Belghith

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Author(s):  
Amy E. Nivette ◽  
Renee Zahnow ◽  
Raul Aguilar ◽  
Andri Ahven ◽  
Shai Amram ◽  
...  

AbstractThe stay-at-home restrictions to control the spread of COVID-19 led to unparalleled sudden change in daily life, but it is unclear how they affected urban crime globally. We collected data on daily counts of crime in 27 cities across 23 countries in the Americas, Europe, the Middle East and Asia. We conducted interrupted time series analyses to assess the impact of stay-at-home restrictions on different types of crime in each city. Our findings show that the stay-at-home policies were associated with a considerable drop in urban crime, but with substantial variation across cities and types of crime. Meta-regression results showed that more stringent restrictions over movement in public space were predictive of larger declines in crime.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Miguel G. Echevarria ◽  
Zhong-Bo Kang ◽  
John Terry

Abstract We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 143-157
Author(s):  
Jovi Atkinson ◽  
Ibrahim M. Albayati

The operation and the development of power system networks introduce new types of stability problems. The effect of the power generation and consumption on the frequency of the power system can be described as a demand/generation imbalance resulting from a sudden increase/decrease in the demand and/or generation. This paper investigates the impact of a loss of generation on the transient behaviour of the power grid frequency. A simplified power system model is proposed to examine the impact of change of the main generation system parameters (system inertia, governor droop setting, load damping constant, and the high-pressure steam turbine power fraction), on the primary frequency response in responding to the disturbance of a 1.32 GW generation loss on the UK power grid. Various rates of primary frequency responses are simulated via adjusting system parameters of the synchronous generators to enable the controlled generators providing a fast-reliable primary frequency response within 10 s after a loss of generation. It is concluded that a generation system inertia and a governor droop setting are the most dominant parameters that effect the system frequency response after a loss of generation. Therefore, for different levels of generation loss, the recovery rate will be dependent on the changes of the governor droop setting values. The proposed model offers a fundamental basis for a further investigation to be carried on how a power system will react during a secondary frequency response.


Sign in / Sign up

Export Citation Format

Share Document