Application of an Exhaust Heat Recovery System for Domestic Hot Water

Author(s):  
Lanbin Liu ◽  
Lin Fu ◽  
Yi Jiang

Typically there is a great deal of waste heat available in drainage system of large-scale public bathhouses, such as public bathhouses in schools, barracks and natatoriums. The paper advances a heat pump system used in bathhouses for exhaust heat recovery. The system consists of solar energy collection system, drainage collection system and heat pump system for exhaust heat recovery. In the system, tap water is heated by energy from solar energy collection system, and is used as hot water for bathing at the beginning. At the same time, drainage collection system collects sewage from bathhouses, and then electric heat pump starts up and recovers the exhaust heat in sewage and heats the tap water. In this way, heat is recycled. Practical operation of the system was introduced, and drainage temperature as well as equipment capacity was optimized based on a practical example. Compared with gas-fired (oil-fired, coal-fired, electric) boilers, the system has advantages of lower energy consumption, less pollution and lower operating cost. Therefore, the system has great superiority in energy conservation and has a good application prospect.

Author(s):  
Lanbin Liu ◽  
Lin Fu ◽  
Shigang Zhang

For large-scale public shower facilities which open up at a specified time, (such as those in schools, barracks, and natatoriums), a great deal of heat is wasted. If this exhaust heat can be recovered and recycled, it will have significant impact in saving energy and environmental protection, with significant economic benefits. In this paper, two different kinds of heat pumps, an electric and an absorption heat pump, used in heat recovery systems are proposed. Specifically, the used shower water is drained through a pipe and first collected in a gray water pool. After a period of time, as the wastewater accumulates volume, the heat pump system can begin heat recovery and recycling. The wastewater is filtered through a filter and piped to a heat exchanger to heat the tap water. Therefore, the tap water temperature can be heated from 12°C to 25°C, and the wastewater temperature will drop from 30°C to 17 °C. Afterwards, the wastewater is piped to the heat pump evaporator and the tap water piped to the condenser for additional heating. At the same time, according to the different characteristics of the electric heat pump and absorption heat pump, different heat recovery system processes and control are detailed. On this basis, the paper analyses the economic and environmental benefit of three schemes for retrofitting based on a practical example: “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”, then finds that direct-fired absorption heat pump heat recovery have lower energy consumption, less pollution, lower operating costs, payback period is shorter and has a promising practical application.


2014 ◽  
Vol 521 ◽  
pp. 757-761 ◽  
Author(s):  
Sheng Hao Xiao ◽  
Qing Hai Luo ◽  
Gao Feng Li

The discharge of the shower wastewater is not only caused energy waste, but also caused a certain thermal pollution to the environment. The thermoelectric heat pump system, compared with the electric heating device, has a more effective output of heat energy. By recycling heat of shower wastewater, it can be both energy-saving and environmental. With a growing ratio of the energy consumption of hot water, the thermoelectric heat pump system may give us a new perspective in the area of waste heat recovery and energy efficiency in buildings.


2015 ◽  
Vol 19 (4) ◽  
pp. 1468-1469 ◽  
Author(s):  
Yin Liu ◽  
Jing Ma ◽  
Guang-Hui Zhou ◽  
Wen-Lei Wan

A heat pump for heat recovery is designed to produce hot water through recovering the heat from the superheated vapor and hot refrigerant in the condenser. The experimental results show that performance of the heat pump system with superheated vapor heat exchanger has obvious superiority over the regular condenser for hot water production.


2013 ◽  
Vol 671-674 ◽  
pp. 2122-2125
Author(s):  
Qi Wang ◽  
Qiang Wang ◽  
Xiao Yang Hui ◽  
Zhi Jun Shi

Composition and operating modes of two different solar-assisted heat pump systems have been introduced in this paper. The advantages of compound heat pump system are analyzed compared with solo heat pump system. Solar-assisted air source heat pump system not only has the advantages, which air source heat pump system (ASHP) has, but also makes good use of renewable solar energy. It can provide cooling, heating and living hot water all the year. Solar-assisted ground source heat pump system realizes advantage complementation in various seasons between solar heat water system and ground source heat pump (GSHP) system. Solar-assisted ground source heat pump system can adjust the system operating model to solve the disadvantage of sole GSHP system, whose performance decrease for the temperature change of soil for long time operating with annual cool and heat unbalancedness. GSHP system can effectively increase the operating stability with the assistance of solar energy.


2013 ◽  
Vol 325-326 ◽  
pp. 379-383
Author(s):  
Jian Lv ◽  
Xiao Hong Ma ◽  
Shu Ai Zhen ◽  
Ying Zhang

Through testing the operation of solar energy-water source heat pump hot water system, analysis of the factors that affect system performance, research engineering optimization strategies for improving systems performance. Given some optimization recommendations for both solar energy system and water source heat pump system. Provide some supports for this new technology which use renewable energy in the future development.


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


Author(s):  
Haifei Chen ◽  
Guiqiang Li ◽  
Yueyue Ling ◽  
Jie Fu ◽  
Yunjie Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document