Utilizing Thermoelectric Heat Pump to Heat Recovery of Shower Waste Water

2014 ◽  
Vol 521 ◽  
pp. 757-761 ◽  
Author(s):  
Sheng Hao Xiao ◽  
Qing Hai Luo ◽  
Gao Feng Li

The discharge of the shower wastewater is not only caused energy waste, but also caused a certain thermal pollution to the environment. The thermoelectric heat pump system, compared with the electric heating device, has a more effective output of heat energy. By recycling heat of shower wastewater, it can be both energy-saving and environmental. With a growing ratio of the energy consumption of hot water, the thermoelectric heat pump system may give us a new perspective in the area of waste heat recovery and energy efficiency in buildings.

Author(s):  
Lanbin Liu ◽  
Lin Fu ◽  
Yi Jiang

Typically there is a great deal of waste heat available in drainage system of large-scale public bathhouses, such as public bathhouses in schools, barracks and natatoriums. The paper advances a heat pump system used in bathhouses for exhaust heat recovery. The system consists of solar energy collection system, drainage collection system and heat pump system for exhaust heat recovery. In the system, tap water is heated by energy from solar energy collection system, and is used as hot water for bathing at the beginning. At the same time, drainage collection system collects sewage from bathhouses, and then electric heat pump starts up and recovers the exhaust heat in sewage and heats the tap water. In this way, heat is recycled. Practical operation of the system was introduced, and drainage temperature as well as equipment capacity was optimized based on a practical example. Compared with gas-fired (oil-fired, coal-fired, electric) boilers, the system has advantages of lower energy consumption, less pollution and lower operating cost. Therefore, the system has great superiority in energy conservation and has a good application prospect.


1980 ◽  
Vol 102 (3) ◽  
pp. 173-180 ◽  
Author(s):  
A. H. Urdaneta-B ◽  
P. S. Schmidt

A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Several thermodynamic and economic performance ratios are computed for comparative evaluation of heat pumps versus conventional systems. Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit. Results of the case studies are presented to illustrate the use of the program and to show the sensitivity of heat pump system economics to the various design parameters.


2015 ◽  
Vol 19 (4) ◽  
pp. 1468-1469 ◽  
Author(s):  
Yin Liu ◽  
Jing Ma ◽  
Guang-Hui Zhou ◽  
Wen-Lei Wan

A heat pump for heat recovery is designed to produce hot water through recovering the heat from the superheated vapor and hot refrigerant in the condenser. The experimental results show that performance of the heat pump system with superheated vapor heat exchanger has obvious superiority over the regular condenser for hot water production.


Sign in / Sign up

Export Citation Format

Share Document