Design and Analysis of a Continuous Operating Solar Absorption Cooling System

Author(s):  
Samved Patil ◽  
K. Max Zhang ◽  
Aditya Sahasrabuddhe ◽  
Shrewans Padhye

It has been estimated that approximately 15% of electricity produced in the whole world is utilized for refrigeration and air-conditioning applications. Increased use of air conditioning and related appliances during hot summer days leads to high electricity demands in metropolitan areas, which have to be met, in part, by generations from expensive and polluting peaking units. Thus solar cooling has great potential in reducing peaking electricity demands and the overall energy demands. We first compared the overall efficiencies of two solar cooling systems, i.e., vapor compression powered by electricity generated from photovoltaics, and vapor absorption using solar heating. Both systems matched evenly when the coefficients of performance (COP) were compared. But the payback time for vapor compression was five times longer than that for vapor absorption. Then we designed a novel solar cooling system by combining vapor absorption refrigeration (NH3-H2O absorption cycle), concentrated solar and thermal storage. The system is capable of operating autonomously at nights or two days without adequate sunlight. Heating oil is heated by a parabolic trough collector and is then stored in an insulated tank. The oil is then used to heat the refrigerants (i.e., NH3). Oil flows in two loops, one from parabolic collector to tank using thermo-syphon action and other from the tank to refrigerator using a small pump. Next, we created a model to calculate the volume of storage tank, area of solar collector for a given longitude and latitude and application. A micro-processor controlled program can be then be developed in future to control mass flow of oil in the second loop to control the output temperature.

2006 ◽  
Vol 17 (3) ◽  
pp. 65-70 ◽  
Author(s):  
V Mittal ◽  
K S Kasana ◽  
N S Thakur

This paper presents modelling and simulation of a solar absorption cooling system. In this paper, the modelling of a solar-powered, single stage, absorption cooling system, using a flat plate collector and water–lithium bromide solution, is done. A computer program has been developed for the absorption system to simulate various cycle configurations with the help of various weather data for the village Bahal, District Bhiwani, Haryana, India. The effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling component are studied. The hot water inlet temperature is found to affect the surface area of some of the system components. Moreover the effect of the reference temperature which is the minimum allowable hot water inlet temperature on the fraction of total load met by non-purchased energy (FNP) and coefficient of performance (COP) is studied and it is found that high reference temperature increases the system COP and decreases the surface area of system components but lower reference temperature gives better results for FNP than high reference temperatures.


2020 ◽  
Vol 112 ◽  
pp. 1-13 ◽  
Author(s):  
J.A. Aguilar-Jiménez ◽  
N. Velázquez-Limón ◽  
R. López-Zavala ◽  
L.A. González-Uribe ◽  
S. Islas ◽  
...  

Author(s):  
Yin Hang ◽  
Ming Qu

As one of the most promising solutions to the reduction of fossil fuel consumption and greenhouse gas emissions, the use of solar energy for building space heating and cooling recently has again aroused researcher’s interest with the growing awareness of the global warming and other environmental problems. Compared to the relatively mature solar heating, solar cooling technology remains at the demonstration and testing stage due to its complicated system characteristics, both in concept and construction. Among many solar cooling technologies, solar absorption technology is the most suitable technology for the solar cooling. The major barriers to widespread deployment of the solar absorption cooling are its high first cost, the lack of guidelines of its design and operation, and the relative low system performance due to the lack of the system integration. The paper provides detailed information of an on-going solar heating and cooling research project conducted at Purdue University in West Lafayette, Indiana. The aim of the research is to develop a cost-effective and integrated solar heating and cooling system. The solar thermal system primarily includes a 45kW single effect absorption chiller, evacuated tube solar collectors (ET), and heat storage tanks. The system has been designed based upon scientific principles and engineering fundamentals. It has been analyzed and optimized to achieve the high cost-effectiveness and the high system efficiency through the system performance simulation in Transient Energy System Simulation (TRNSYS) program.


2010 ◽  
Vol 42 (2) ◽  
pp. 265-272 ◽  
Author(s):  
T. Tsoutsos ◽  
E. Aloumpi ◽  
Z. Gkouskos ◽  
M. Karagiorgas

KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 22
Author(s):  
Andang Widiharto ◽  
Didit Setyo Pamuji ◽  
Atik Nurul Laila ◽  
Fiki Rahmatika Salis ◽  
Luthfi Zharif ◽  
...  

<p>Air conditioning (AC) is one of the most building’s energy consumer, included in building of Engineering Physisc’s Departement, Universitas Gadjah Mada (UGM). The declining of fossil fuel reserves and the increasing effects of global warming, forcing the world to switch to renewable energy sources. This paper discusses the design of solar absorption cooling system to replace conventional AC in seven lecture halls of Engineering Physic’s Departement, UGM. There are some steps that have been done to design the solar absorption cooling, i.e. do a study of the potential availability of solar energy, calculate the cooling loads, analyze the thermodynamic process of the system, determine the type of collector to be used and calculate area of solar collector needed. The thermal coefficient of performance (COP) of the system designed was about 0.84 which could use some types of flat plate solar collector with each area corresponding to each efficiency values. </p><p><strong>Keyword</strong> : Air conditioning; global warming; solar absorption cooling; solar collector</p>


Sign in / Sign up

Export Citation Format

Share Document