scholarly journals Development and Test of a Direct Contact Heat Exchanger (Particle - Air) for Industrial Process Heat Applications

Author(s):  
Johannes Hertel ◽  
Miriam Ebert ◽  
Lars Amsbeck ◽  
Birgit Gobereit ◽  
Jens Rheinländer ◽  
...  

Abstract A direct absorption receiver using ceramic particles (CentRec) has been successfully developed by DLR and tested under solar conditions at the Juelich Solar Power Tower, demonstrating receiver outlet temperatures of more than 900 °C. The next step towards commercial application of the technology is to demonstrate a cost-effective, high temperature heat extraction and transfer to a process medium. Besides e.g. steam for electricity generation in a steam turbine, hot air can be used to supply heat to industrial processes with energy demand at high temperature level. A great potential for higher efficiencies and lower costs has been identified for a moving bed heat exchanger. Several concepts of direct contact heat exchangers have been analyzed and evaluated. The selected concept is a combination of several crossflow-sections that are arranged in series with fluid-mixing-chambers between each crossflow-section. Based on the selected design a heat exchanger prototype with 10 kW thermal power and a design air outlet temperature of 750 °C has been built and integrated into a test setup. The test setup provides particles at 900 °C that are heated up electrically inside a hopper on top of the heat exchanger. Hot particles are then moving downwards (moving bed) from the hopper through the direct contact heat exchanger driven by gravity. Cold air supplied by a compressor flows through the particle bed in cross-flow and is heated up. The hot air flow leaves the heat exchanger with a temperature of 750 °C. The particle mass flow is controlled by an oscillating mass flow controller, positioned under the heat exchanger. The cold particles are collected in a container on the bottom. The particle cycle is closed by transporting them back to the hopper. A measurement and control system is implemented to carry out the tests. The test setup has undergone successful commissioning in October and an extensive testing phase started in January 2019. This paper presents the development and manufacturing as well as the successful commissioning of the heat exchanger prototype.

2019 ◽  
Vol 147 ◽  
pp. 592-601 ◽  
Author(s):  
Jianxin Xu ◽  
Qingtai Xiao ◽  
Zhihan Lv ◽  
Junwei Huang ◽  
Ruoxiu Xiao ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hameed B. Mahood ◽  
Adel O. Sharif ◽  
Seyed Ali Hosseini ◽  
Rex B. Thorpe

An analytical model for the temperature distribution of a spray column, three-phase direct contact heat exchanger is developed. So far there were only numerical models available for this process; however to understand the dynamic behaviour of these systems, characteristic models are required. In this work, using cell model configuration and irrotational potential flow approximation characteristic models has been developed for the relative velocity and the drag coefficient of the evaporation swarm of drops in an immiscible liquid, using a convective heat transfer coefficient of those drops included the drop interaction effect, which derived by authors already. Moreover, one-dimensional energy equation was formulated involving the direct contact heat transfer coefficient, the holdup ratio, the drop radius, the relative velocity, and the physical phases properties. In addition, time-dependent drops sizes were taken into account as a function of vaporization ratio inside the drops, while a constant holdup ratio along the column was assumed. Furthermore, the model correlated well against experimental data.


2001 ◽  
Vol 30 (2) ◽  
pp. 95-113
Author(s):  
Akiyoshi Ohira ◽  
Michio Yanadori ◽  
Kunihiko Iwabuchi ◽  
Toshikatsu Kimura ◽  
Yuji Tsubota

KSME Journal ◽  
1995 ◽  
Vol 9 (1) ◽  
pp. 19-28 ◽  
Author(s):  
In Seak Kang ◽  
Chong Bo Kim ◽  
Won Gee Chun

1981 ◽  
Vol 103 (2) ◽  
pp. 128-132 ◽  
Author(s):  
C. A. Kodres ◽  
H. R. Jacobs ◽  
R. F. Boehm

An explicit procedure for analyzing a superheated, evaporating lens direct contact heat exchanger has been developed. This method is based upon the application of a dimensional analysis derivation of a relationship for the heat flux from a single evaporating lens. Several suggestions are offered for use in the design of these devices. To estimate the error introduced by extrapolating a single lens model to represent a system of lenses, the method is used to “design” two operating geothermal heat exchangers. A difference of about 16 percent is observed between the calculated and measured overall heat flux.


Sign in / Sign up

Export Citation Format

Share Document