scholarly journals Numerical and Experimental Studies of High Strain Rate Mechanical Behavior of E-Glass/Polyester Composite Laminates

Author(s):  
Gozde Tunusoglu ◽  
Alper Tasdemirci ◽  
Mustafa Guden ◽  
I. W. Hall

Quasi-static (∼10−3 s−1) and high strain rate (∼850 s−1) compression behavior of an E-glass/polyester composite was determined in the through-thickness and in-plane directions. In both directions, modulus and failure strength increased with increasing strain rate. Higher strain rate sensitivity for both elastic modulus and failure strength was observed in the inplane direction. A numerical model was developed to investigate the compressive deformation and fracture of an E-glass/polyester composite. Excellent agreement was demonstrated for the case of high strain rate loading. Also, the fracture geometries were successfully predicted with the numerical model.

2005 ◽  
Vol 9 ◽  
pp. 87-92 ◽  
Author(s):  
B. Wang ◽  
Guo Xing Lu

An experimental study was conducted to investigate the dynamic strength of steel welds under high strain rate loadings. Flow stresses of both the base steel material and the weld filament were obtained under strain rate loadings of up to 9 × 102 s-1. The data was then fitted to the Cowper-Simmons [1] relation with the D and q values given. The finding helps to understand the strain rate sensitivity of the base and welded materials.


1985 ◽  
Vol 46 (C5) ◽  
pp. C5-511-C5-516
Author(s):  
A. Kobayashi ◽  
S. Hashimoto ◽  
Li-lih Wang ◽  
M. Toba

2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


2019 ◽  
Vol 742 ◽  
pp. 532-539 ◽  
Author(s):  
J. Tan ◽  
L. Lu ◽  
H.Y. Li ◽  
X.H. Xiao ◽  
Z. Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document