A Study on Flow in Duct Constructed of Nonwoven Fabric

Author(s):  
Masahiko Sakamoto ◽  
Toshiyuki Sawabe ◽  
Kiichiro Izumi

The purpose of this paper is to investigate both the flow characteristics in the sock type of the air filter constructed of nonwoven fabric and the effect on drag reduction in a circular pipe flow by means of the wall coated with nonwoven fabric. The nonwoven fabric used in these experiments is an electret one made of polypropylene, and the fiber distribution is a random laying. The fiber is about 4 μ m in diameter and 0.6 mm in thickness of web. The nonwoven fabric without adhesion of dust was used in these experiments. The pressure distribution along the flow direction was measured for various parameters such as Reynolds number, shape of the air filter, and type of nonwoven fabric. The value of the permeability for the present nonwoven fabric is on the order of 10−11(m2) within the limits of this experiment. The pressure in the sock type of the air filter increases with increasing Re. The experimental results can be explained by Darcy’s law as d/L is larger than 0.1. In the small range of Re the calculated values obtained by the one-dimensional flow model qualitatively agree with those obtained by this experiment. It was proven that the wall coated with the nonwoven fabric is effective to reduce the drag in the circular pipe flow.

1990 ◽  
Vol 23 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Kohei Ogawa ◽  
Shiro Yoshikawa ◽  
Akira Suguro ◽  
Jun Ikeda ◽  
Hirohisa Ogawa

2012 ◽  
Vol 2012 (0) ◽  
pp. 113-114
Author(s):  
Hitoshi SASAKI ◽  
Yuhiro IWAMOTO ◽  
Xiao-Dong NYU ◽  
Hiroshi YAMAGUCHI

1986 ◽  
Vol 108 (4) ◽  
pp. 486-488 ◽  
Author(s):  
E. D. Doss ◽  
M. G. Srinivasan

The empirical expressions for the equivalent friction factor to simulate the effect of particle-wall interaction with a single solid species have been extended to model the wall shear stress for multispecies solid-gas flows. Expressions representing the equivalent shear stress for solid-gas flows obtained from these wall friction models are included in the one-dimensional two-phase flow model and it can be used to study the effect of particle-wall interaction on the flow characteristics.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1353
Author(s):  
Hirotaka Morimatsu ◽  
Takahiro Tsukahara

Direct numerical simulations were carried out with an emphasis on the intermittency and localized turbulence structure occurring within the subcritical transitional regime of a concentric annular Couette–Poiseuille flow. In the annular system, the ratio of the inner to outer cylinder radius is an important geometrical parameter affecting the large-scale nature of the intermittency. We chose a low radius ratio of 0.1 and imposed a constant pressure gradient providing practically zero shear on the inner cylinder such that the base flow was approximated to that of a circular pipe flow. Localized turbulent puffs, that is, axial uni-directional intermittencies similar to those observed in the transitional circular pipe flow, were observed in the annular Couette–Poiseuille flow. Puff splitting events were clearly observed rather far from the global critical Reynolds number, near which given puffs survived without a splitting event throughout the observation period, which was as long as 104 outer time units. The characterization as a directed-percolation universal class was also discussed.


2017 ◽  
Vol 31 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Kotaro NAKAMURA ◽  
Yuji TASAKA ◽  
Yuichi MURAI

2013 ◽  
Vol 2013 (0) ◽  
pp. _G0501-01_-_G0501-02_
Author(s):  
Tatsuya TSUNEYOSHI ◽  
Yuki KATAI ◽  
Taro IKAI ◽  
Teppei TANAKA ◽  
Takahiro ITO ◽  
...  

2012 ◽  
Vol 2012.18 (0) ◽  
pp. 73-74
Author(s):  
Yuki INAIDA ◽  
Atsushi TAKEYAMA ◽  
Donghyuk KANG ◽  
Kazuhiko YOKOTA

Sign in / Sign up

Export Citation Format

Share Document