Linear Stability of Sharp and Diffuse Interfaces Under Shear

Author(s):  
Theo Theofanous ◽  
Svetlana Sushchikh ◽  
Robert Nourgaliev

We show that diffuse interfaces in shear flow are prone to instabilities that are of the same origin and character as the Yih-instability (for sharp interfaces between immiscible fluids). We also show that the development of these “Yih-like” instabilities towards “Yih” is monotonic, and that the agreement with Yih becomes quantitative as the limits of zero thickness and no-diffusion are approached.

1997 ◽  
Vol 350 ◽  
pp. 271-293 ◽  
Author(s):  
PAUL MATTHEWS ◽  
STEPHEN COX

In many geophysical and astrophysical contexts, thermal convection is influenced by both rotation and an underlying shear flow. The linear theory for thermal convection is presented, with attention restricted to a layer of fluid rotating about a horizontal axis, and plane Couette flow driven by differential motion of the horizontal boundaries.The eigenvalue problem to determine the critical Rayleigh number is solved numerically assuming rigid, fixed-temperature boundaries. The preferred orientation of the convection rolls is found, for different orientations of the rotation vector with respect to the shear flow. For moderate rates of shear and rotation, the preferred roll orientation depends only on their ratio, the Rossby number.It is well known that rotation alone acts to favour rolls aligned with the rotation vector, and to suppress rolls of other orientations. Similarly, in a shear flow, rolls parallel to the shear flow are preferred. However, it is found that when the rotation vector and shear flow are parallel, the two effects lead counter-intuitively (as in other, analogous convection problems) to a preference for oblique rolls, and a critical Rayleigh number below that for Rayleigh–Bénard convection.When the boundaries are poorly conducting, the eigenvalue problem is solved analytically by means of an asymptotic expansion in the aspect ratio of the rolls. The behaviour of the stability problem is found to be qualitatively similar to that for fixed-temperature boundaries.Fully nonlinear numerical simulations of the convection are also carried out. These are generally consistent with the linear stability theory, showing convection in the form of rolls near the onset of motion, with the appropriate orientation. More complicated states are found further from critical.


2002 ◽  
Vol 466 ◽  
pp. 113-147 ◽  
Author(s):  
HSIEN-HUNG WEI ◽  
DAVID S. RUMSCHITZKI

This paper examines the core–annular flow of two immiscible fluids in a straight circular tube with a small corrugation, in the limit where the ratio ε of the mean undisturbed annulus thickness to the mean core radius and the corrugation (characterized by the parameter σ) are both asymptotically small and where the surface tension is small. It is motivated by the problems of liquid–liquid displacement in irregular rock pores such as occur in secondary oil recovery and in the evolution of the liquid film lining the bronchii in the lungs whose diameters vary over different generations of branching. We investigate the asymptotic base flow in this limit and consider the linear stability of its leading order (in the corrugation parameter) solution. For the chosen scalings of the non-dimensional parameters the core's base flow slaves that of the annulus. The equation governing the leading-order interfacial position for a given wall corrugation function shows a competition between shear and capillarity. The former tends to align the interface shape with that of the wall and the latter tends to introduce a phase shift, which can be of either sign depending on whether the circumferential or the longitudinal component of capillarity dominates. The asymptotic linear stability of this leading-order base flow reduces to a single partial differential equation with non-constant coefficients deriving from the non-uniform base flow for the time evolution of an interfacial disturbance. Examination of a single mode k wall function allows the use of Floquet theory to analyse this equation. Direct numerical solutions of the above partial differential equation agree with the predictions of the Floquet analysis. The resulting spectrum is periodic in α- space, α being the disturbance wavenumber space. The presence of a small corrugation not only modifies (at order σ2) the primary eigenvalue of the system. In addition, short-wave order-one disturbances that would be stabilized flowing to capillarity in the absence of corrugation can, in the presence of corrugation and over time scales of order ln(1/σ), excite higher wall harmonics (α±nk) leading to the growth of unstable long waves. Similar results obtain for more complicated wall shape functions. The main result is that a small corrugation makes a core–annular flow unstable to far more disturbances than would destabilize the same uncorrugated flow system. A companion paper examines that competition between this added destabilization due to pore corrugation with the wave steepening and stabilization in the weakly nonlinear regime.


2006 ◽  
Vol 51 (25) ◽  
pp. 5316-5323 ◽  
Author(s):  
O. Ozen ◽  
N. Aubry ◽  
D.T. Papageorgiou ◽  
P.G. Petropoulos

Author(s):  
Robert Nourgaliev ◽  
Meng-Sing Liou ◽  
Theo Theofanous

We assess the state of the art in numerical prediction of interfacial instabilities due to shear in layered flows of viscous fluids. Basic ingredients of this assessment include linear stability analysis results for both miscible (diffuse) and immiscible (sharp) interfaces, the physics and resolution requirements of the critical layer, and convergence properties of the relevant numerical schemes. Behaviors of physically and numerically diffuse interfaces are contrasted and the case for a sharp interface treatment for reliable predictions of this class of flows is made.


2011 ◽  
Vol 41 (2) ◽  
pp. 303-328 ◽  
Author(s):  
Gaële Perret ◽  
Thomas Dubos ◽  
Alexandre Stegner

Abstract Large-scale vortices, that is, eddies whose characteristic length scale is larger than the local Rossby radius of deformation Rd, are ubiquitous in the oceans, with anticyclonic vortices more prevalent than cyclonic ones. Stability or robustness properties of already formed shallow-water vortices have been investigated to explain this cyclone–anticyclone asymmetry. Here the focus is on possible asymmetries during the generation of vortices through barotropic instability of a parallel flow. The initial stage and the nonlinear stage of the instability are studied by means of linear stability analysis and direct numerical simulations of the one-layer rotating shallow-water equations, respectively. A wide variety of parallel flows are studied: isolated shears, the Bickley jet, and a family of wakes obtained by combining two shears of opposite signs. The results show that, when the flow is characterized by finite relative isopycnal deviation, the barotropic instability favors the formation of large-scale anticyclonic eddies. The authors emphasize here that the cyclone–anticyclone asymmetry of parallel flows may appear at the linear stage of the instability. This asymmetry finds its origin in the linear stability property of localized shear flows. Indeed, for both the cyclogeostrophic regime (finite Rossby number) and the frontal geostrophic regime (small Burger number), an anticyclonic shear flow has higher linear growth rates than an equivalent cyclonic shear flow. The nonlinear saturation then leads to the formation of almost axisymmetric anticyclones, while the cyclones tend to be more elongated in the shear direction. However, although some unstable parallel flows exhibit the asymmetry at the linear stage, others exhibit such asymmetry at the nonlinear stage only. If the distance separating two shear regions is large enough, the barotropic instability develops independently in each shear, leading in the frontal and the cyclogeostrophic regime to a significant cyclone–anticyclone asymmetry at the linear stage. Conversely, if the two shear regions are close to each other, the shears tend to be coupled at the linear stage. The most unstable perturbation then resembles the sinuous mode of the Bickley jet, making no distinction between regions of cyclonic or anticyclonic vorticity. Nevertheless, when the nonlinear saturation occurs, large-scale anticyclones tend to be axisymmetric while the cyclonic structures are highly distorted and elongated along the jet meander.


2006 ◽  
Vol 20 (8) ◽  
pp. 1309-1320 ◽  
Author(s):  
Yang Na ◽  
Seungbae Lee ◽  
Dongshin Shin

1974 ◽  
Vol 66 (2) ◽  
pp. 267-272 ◽  
Author(s):  
R. D. Cess ◽  
Harshvardhan

Employing a linear stability analysis, Dudis (1973) has recently suggested that shear-flow instability might exist within the upper stratosphere of Venus owing to destabilization by radiative transfer. We have incorporated a more realistic formulation for radiative transfer into his stability analysis and conclude that such an instability is unlikely.


Sign in / Sign up

Export Citation Format

Share Document