barotropic instability
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Tsz-Kin Lai ◽  
Eric A. Hendricks ◽  
M. K. Yau

AbstractSecondary eyewall formation and the ensuing eyewall replacement cycles may take place in mature tropical cyclones (TCs) during part of their lifetime. A better understanding of the underlying dynamics is beneficial to improving the prediction of TC intensity and structure. Previous studies suggested that the barotropic instability (BI) across the moat (a.k.a. type-2 BI) can make a substantial contribution to the inner eyewall decay through the associated eddy radial transport of absolute angular momentum (AAM). Simultaneously, the type-2 BI can also increase the AAM of the outer eyewall. While the previous studies focused on the early stage of the type-2 BI, this paper explores the long-term effect of the type-2 BI and the underlying processes in forced and unforced shallow water experiments. Under the long-term effect, it will be shown that the inner eyewalls repeatedly weaken and strengthen (while the order is reversed for the outer eyewalls). Sensitivity tests are conducted to examine the sensitivity of the long-term effect of the type-2 BI to different vortex parameters and the strength of the parameterised diabatic heating. Implication of the long-term effect for the intensity changes of the inner and outer eyewalls of real TCs are also discussed.


2021 ◽  
Author(s):  
Vannia Jaqueline Aliaga Nestares ◽  
Diego Fernando Rodriguez Zimmermann ◽  
Nelson Quispe Gutiérrez

The behavior of the second band of the Intertropical Convergence Zone (ITCZ), near the Peruvian coast during early 2017, is studied, using precipitation, surface winds, sea surface temperature (SST) and atmospheric variables in different isobaric levels. The proposal of a daily index (Ia) to identify, opportunely, the formation of this band and the Lorenz energy terms in the region is also considered. This band was present from late January to early April 2017, associated with an anomalous dipole of sea level pressure between the east and west Oriental Equatorial Pacific, that configured anomalously northerly surface winds and relaxation of southeasterly trade winds near Peru. In medium levels, a zonally-oriented positive mixing ratio anomaly is observed in early March over the ITCZ’s second band, associated with heavy rain systems over the northern Peruvian coastal region. In the same period, positive anomalies of divergence in high tropospheric levels are observed. The daily Ia index allowed an effective detection of the ITCZ’s second band with 11 days prior the maximum coastal precipitation, and the Lorenz energy terms showed kinetic eddies energy (KE) peaks in January and February and a contribution of barotropic instability in equatorial regions.


Author(s):  
Eric Bembenek ◽  
Timothy M. Merlis ◽  
David N. Straub

AbstractA large fraction of tropical cyclones (TCs) are generated near the intertropical convergence zone (ITCZ), and barotropic instability of the related wind shear has been shown to be an important generation mechanism. The latitudinal position of the ITCZ shifts seasonally and may shift poleward in response to global warming. Aquaplanet GCM simulations have shown TC-generation frequency to vary with position of the ITCZ. These results, and that moisture plays an essential role in the dynamics, motivate the present study on the growth rates of barotropic instability in ITCZ-like zonal wind profiles. Base-state zonal wind profiles are generated by applying a prescribed forcing (representing zonally-averaged latent heat release in the ITCZ) to a shallow-water model. Shifting the latitudinal position of the forcing alters these profiles, with a poleward shift leading to enhanced barotropic instability. Next, an examination of how latent release impacts the barotropic breakdown of these profiles is considered. To do this, moisture is explicitly represented using a tracer variable. Upon supersaturation, precipitation occurs and the related latent heat release is parameterized as a mass transfer out of the dynamically active layer. Whether moisture serves to enhance or reduce barotropic growth rates is found to depend on how saturation humidity is represented. In particular, taking it to be constant or a function of the layer thickness (related to temperature) leads to a reduction, whereas taking it to be a specified function of latitude leads to an enhancement. Simple arguments are given to support the idea that moisture effects should lead to a reduction in the moist shallow water model and that a poleward shift of the ITCZ should lead to an enhancement of barotropic instability.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
V. S. Travkin ◽  
T. V. Belonenko ◽  
◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy was studied. Mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23·1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one, and the mean available potential energy into the vortex available potential one (baroclinic and barotropic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. Increase in the available potential energy is confirmed by a significant positive trend and by decrease of the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2021 ◽  
Vol 78 (5) ◽  
pp. 1411-1428
Author(s):  
Tsz-Kin Lai ◽  
Eric A. Hendricks ◽  
M. K. Yau ◽  
Konstantinos Menelaou

AbstractIntense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.


2021 ◽  
Author(s):  
Tobias Schulzki ◽  
Klaus Getzlaff ◽  
Arne Biastoch

<p>The southward flow of North Atlantic Deep Water makes up the major component of the AMOC's deepwater limb. In the subtropical North Atlantic, it's flow is concentrated along the continental slope, forming a coherent Deep Western Boundary Current (DWBC). Both, observations and models show a high variability of the flow in this region.<br>We use an eddy-rich ocean model to show that this variability is mainly caused by eddies and meanders that are generated by barotropic instability. They occur along the entire DWBC pathway and introduce several reciruculation gyres that result in a decorrelation of DWBC transport at 26.5°N and 16°N, despite the fact that a considerable mean transport of 20 Sv connects the two latitudes. Water in the DWBC at 26.5°N is partly returned northward. Because the amount of water returned depends on the DWBC transport itself, a stronger DWBC does not necessarily lead to an increased amount of water that reaches 16°N. <br>Along the pathway to 16°N, the transport signal is altered by a broad and temporally variable transit time distribution. Thus, advection in the DWBC cannot account for coherent AMOC changes on interannual timescales seen in the model.</p>


2021 ◽  
Author(s):  
Olga Dymova ◽  
Sergey Demyshev ◽  
Dmitry Alekseev

<p>The aim of the work is to study the mechanisms of the Black Sea mesoscale variability based on an analysis of Lorenz energy cycles calculated from the density and currents velocity obtained by the results of three numerical experiments. An eddy-resolving z-model with a horizontal resolution of 1.6 km was used. Three experiments were carried out with different atmospheric forcing: 1) - climatic data; 2) - SKIRON data for 2011; 3) – SKIRON data for 2016. The mean current kinetic energy MKE, the eddy kinetic energy EKE, the mean available potential energy MPE, the eddy available potential energy EPE and the rates of energy conversion, generation and dissipation were considered in detail.</p><p>For all experiments the generation and dissipation rates of the MKE and EKE are close to each other, so the kinetic energy from wind dissipated inside the sea. A buoyancy work (described by the conversion between the MPE and MKE) increase the MKE. The EKE was increasing due to the energy transport from the mean current into eddies and the transport from the EPE to the EKE for all experiments. It is shown that these two energy fluxes were comparable in the experiment 1, while the ratio between of them has changed almost six times in the experiments 2 and 3. The c(MKE, EKE) prevailed in 2011, but the c(EPE, EKE) dominated in 2016.</p><p>The maps analysis of the EKE spatial distribution showed that its maximum in the climatic field was located above a continental slope and in areas of the biggest mesoscale eddies. The mesoscale variability of the climatic circulation was due to the influence of both baroclinic and barotropic instability. The zones of the EKE maximum were located in the abyssal part of the sea in the experiments 2 and 3. EKE was increasing in 2011 mainly due to the inflow from the mean current through barotropic instability. The growth of EKE in 2016 was due to conversion of EPE induced by baroclinic instability.</p><p>The difference in the EKE variability by the results of climatic and real forcing experiments is associated with the wind forcing. The contribution of the wind stress work to MKE was decreased for the experiments 2 and 3, so as a result, it was observed weakening in the mean current, intensive stream meandering and generation of mesoscale eddies not only in the coastal zones but also in the abyssal part of the sea. Thus, the Black Sea mesoscale variability is determined by barotropic instability or by the combined contribution of barotropic and baroclinic instability processes under intense wind action. The mesoscale variability is due to baroclinic instability under weak wind action.</p><p>The reported study was funded by RFBR and Government of the Sevastopol according to the research project No 18-45-920019 and the state task No. 0555-2021-0004.</p>


Author(s):  
Linlin Zhang ◽  
Yuchao Hui ◽  
Tangdong Qu ◽  
Dunxin Hu

AbstractSeasonal modulation of subthermocline Eddy Kinetic Energy (EKE) east of the Philippines and its associated dynamics are studied, using mooring measurements and outputs from an eddy-resolving ocean general circulation model for the period from 2000 to 2017. Significantly high EKE appears below the thermocline in the latitude band between 5°N and 14°N east of the Philippines. Separated by 10°N, the EKE in the northern and southern parts of the region shows nearly opposite seasonal cycles, with its magnitude reaching maximum in early spring and minimum in summer in the northern part and reaching maximum in summer and minimum in winter in the southern part of the region. Further investigation indicates that both baroclinic and barotropic instabilities are essential in generating the subthermocline eddies, but the seasonal variation of subthermocline EKE is mainly caused by the seasonal modulation of barotropic instability. The seasonal modulation of barotropic instability in the northern and southern part of the region is associated with the seasonal evolution of North Equatorial Undercurrent and Halmahera Eddy, respectively.


Sign in / Sign up

Export Citation Format

Share Document