The Effect of Variable Catalyst Loading in Electrodes on PEM Fuel Cell Performance

Author(s):  
R. Roshandel ◽  
B. Farhanieh

Catalyst layers are one the important parts of the PEM fuel cells as they are the main place for electrochemical reaction taking place in anode and cathode of the cells. The amount of catalyst loading of this layer has a large effect on PEM fuel cell performance. Non-uniformity of reactant concentration could lead to a variation of current density in anode and cathode catalyst layer. The main reason for this phenomenon is porosity variation due to two effects: 1. compression of electrode on the solid landing area and 2. Water produced at the cathode side of diffusion layer. In this study the effect of variable current density in anode and cathode electrode on cell performance is investigated. It has shown that better cell performance could be achieved by adding a certain amount of catalyst loading to each electrode, with respect to the reactant concentration.

2018 ◽  
Vol 156 ◽  
pp. 03033 ◽  
Author(s):  
Mulyazmi ◽  
W.R W Daud ◽  
Silvi Octavia ◽  
Maria Ulfah

Design of the Proton Exchange Membrane (PEM) fuel cell system is still developed and improved to achieve performance and efficiency optimal. Improvement of PEM fuel cell performance can be achieved by knowing the effect of system parameters based on thermodynamics on voltage and current density. Many parameters affect the performance of PEM fuel cell, one of which is the relative humidity of the reactants that flow in on the anode and cathode sides. The results of this study show that the increase in relative humidity value on the cathode side (RHC) causes a significant increase in current density value when compared to the increase of relative humidity value on the anode side (RHA). The performance of single cells with high values is found in RHC is from 70% to 90%. The maximum current density generated at RHA is 70% and RHC is 90% with PEM operating temperature of 363 K and pressure of 1 atm


Author(s):  
Tao Zhang ◽  
Pei-Wen Li ◽  
Qing-Ming Wang ◽  
Laura Schaefer ◽  
Minking K. Chyu

Two types of miniaturized PEM fuel cells are designed and characterized in comparison with a compact commercial fuel cell device in this paper. One has Nafion® membrane electrolyte sandwiched by two brass bipolar plates with micromachined meander-like gas channels. The cross-sectional area of the gas flow channel is approximately 250 by 250 (μm). The other uses the same Nafion® membrane and anode structure, but in stead of the brass plate, a thin stainless steel plate with perforated round holes is used at cathode side. The new cathode structure is expected to allow oxygen (air) being supplied by free-convection mass transfer. The characteristic curves of the fuel cell devices are measured. The activation loss and ohmic loss of the fuel cells have been estimated using empirical equations. Critical issues such as flow arrangement, water removing and air feeding modes concerning the fuel cell performance are investigated in this research. The experimental results demonstrate that the miniaturized fuel cell with free air convection mode is a simple and reliable way for fuel cell operation that could be employed in potential applications although the maximum achievable current density is less favorable due to limited mass transfer of oxygen (air). The relation between the fuel cell dimensions and the maximum achievable current density is also discussed with respect to free-convection mode of air feeding.


2004 ◽  
Vol 127 (1-2) ◽  
pp. 162-171 ◽  
Author(s):  
H.A. Gasteiger ◽  
J.E. Panels ◽  
S.G. Yan

Author(s):  
Pinkhas Rapaport ◽  
Yeh-Hung Lai ◽  
Chunxin Ji

This paper reports on the study of gas diffusion media (GDM) intrusion into reactant gas channels and its effect on the performance of the proton exchange membrane (PEM) fuel cell. The PEM fuel cell under consideration consists of a membrane electrode assembly (MEA) sandwiched between two layers of gas diffusion media commonly made of carbon paper or cloth. The GDM/MEA/GDM assembly is then compressed between two adjacent bi-polar plates. In this configuration, the compression pressure is transmitted under the lands of the reactant gas flow-field onto GDMs on which the portion over the channels remain unsupported. Because of the relatively low bending and compressive stiffness, it is found that GDMs can easily intrude into the reactant gas channels. The direct consequence of GDM intrusion is the pressure drop increase in the reactant gases in the intruded channels. This is further compounded by cell-to-cell or channel-to-channel variation in GDM thickness and mechanical properties, which results in non-uniform reactant gas flow distribution and ultimately negatively impacts the fuel cell performance. In this study, we have developed a GDM intrusion model based on the finite element method (FEM. We have also devised an experimental setup to measure the GDM intrusion, in which we found good agreement between the model prediction and experimental measurement. Combining the FEM based intrusion model and a flow redistribution model we have investigated the effect of GDM channel intrusion on the reactant flow distribution and the impact on the fuel cell performance. It is found that a 20% reduction of reactant flow can be induced with a 5% additional blockage in channels by GDM intrusion. Based on the findings from the current study, we attribute the significant performance variation in a 30-cell fuel cell stack to the variation in reactant flow induced by the variation in GDM intrusion. The results from the analytical study and fuel cell testing both suggested that the product variations in GDM would need to be significantly reduced and the stiffness of the GDM would need to be increased if the PEM fuel cells of high power density were to be used reliably at a relatively low stoichiometry.


2005 ◽  
Vol 3 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Qingyun Liu ◽  
Junxiao Wu

A multi-resolution simulation method was developed for the polymer electrolyte membrane (PEM) fuel cell simulation: a full 3D model was employed for the membrane and diffusion layer; a 1D+2D model was applied to the catalyst layer, that is, at each location of the fuel cell plate, the governing equations were integrated only in the direction perpendicular to the fuel cell plate; and a quasi-1D model with high numerical efficiency and reasonable accuracy was employed for the flow channels. The simulation accuracy was assessed in terms of the fuel cell polarization curves and membrane Ohmic overpotential. Overall, good agreements between the simulated results and the experimental data were obtained. However, at large current densities, with high relative humidity reactant inputs, the simulation under-predicted the fuel cell performance due to the single-phase assumption; the simulation slightly over-predicted the fuel cell performance for a dry cathode input, possibly due to the nonlinearity of the membrane properties in dehydration case. Further, a parameter study was performed under both fully humidified and relatively dry conditions for the parameters related to the cathode catalyst layer and the gas diffusion layer (GDL). It is found that the effects of liquid water in both the GDL and catalyst layer on the cell performance, and the accurate identification of the cathode catalyst layer parameters such as the cathodic transfer coefficient should be focused for future studies in order to further improve the model accuracy.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1354 ◽  
Author(s):  
Je-Deok Kim ◽  
Satoshi Matsushita ◽  
Kenji Tamura

A crosslinked sulfonated polyphenylsulfone (CSPPSU) polymer and polyvinyl alcohol (PVA) were thermally crosslinked; then, a CSPPSU-vinylon membrane was synthesized using a formalization reaction. Its use as an electrolyte membrane for fuel cells was investigated. PVA was synthesized from polyvinyl acetate (PVAc), using a saponification reaction. The CSPPSU-vinylon membrane was synthesized by the addition of PVA (5 wt%, 10 wt%, 20 wt%), and its chemical, mechanical, conductivity, and fuel cell properties were studied. The conductivity of the CSPPSU-10vinylon membrane is higher than that of the CSPPSU membrane, and a conductivity of 66 mS/cm was obtained at 120 °C and 90% RH (relative humidity). From a fuel cell evaluation at 80 °C, the CSPPSU-10vinylon membrane has a higher current density than CSPPSU and Nafion212 membranes, in both high (100% RH) and low humidification (60% RH). By using a CSPPSU-vinylon membrane instead of a CSPPSU membrane, the conductivity and fuel cell performance improved.


Author(s):  
Dirk Rensink ◽  
Jo¨rg Roth ◽  
Stephan Fell

In a polymer electrolyte membrane (PEM) fuel cell water is produced by electrochemical reactions in the catalyst layer on the cathode side. The water diffuses through the catalyst layer and a fibrous substrate into gas channels where it is transported away by convection. The fibrous substrate represents the gas diffusion media (GDM). Sometimes the GDM has a thin microporous layer on the side facing the catalyst layer. The same layer structure can be found on the anode side. All layers together are the porous layers of a PEM fuel cell. Under certain operating conditions condensation can occur in the porous layers which might lead to flooding conditions and — if the liquid water forms droplets which grow together in the gas channels — the complete blockage of the channels. Both situations can lead to a local starvation of reactant gases with negative impact on fuel cell performance and durability. The void space of the hydrophobic fibrous substrate in a PEM fuel cell can be interpreted as micro channels in a broader sense, especially if liquid phase transport from the catalyst layer towards the gas channels is in focus. Due to the small dimensions with effective channel diameter in the range of micrometer the flow of liquid water is governed by capillary forces. The same applies for the gas channels at low gas velocities since the Bond and Capillary numbers are well below one. Thus the investigation of liquid water flow and distribution under low gas velocities in the hydrophobic fibrous substrate and the spreading of liquid water along the hydrophilic gas channel walls under capillary action is of special interest for PEM fuel cells and investigated here.


Sign in / Sign up

Export Citation Format

Share Document