Towards the Development of a Fuel Cell System for Residential Applications: Propane Reforming via Catalytic Partial Oxidation

Author(s):  
Michael G. Waller ◽  
Mark R. Walluk ◽  
Thomas A. Trabold

The Environmental Protection Agency (EPA) has estimated that 5% of air pollutants originate from small internal combustion engines (ICE) used in non-automotive applications. While there have been significant advances towards developing more sustainable systems to replace large ICEs, few designs have been implemented with the capability to replace small ICEs such as those used in the residential sector for lawn and garden equipment. Replacing these small residential internal combustion engines presents a unique opportunity for early market penetration of fuel cell technologies. This paper describes the initial efforts to build an innovative residential-scale fuel cell system using propane as its fuel source, and the deployment of this technology in a commonly used device found throughout the U.S. There are three main components to this program, including the development of the propane reforming system, fuel cell operation, and the overall system integration. This paper presents the reforming results of propane catalytic partial oxidation (cPOx). The primary parameters used to evaluate the reformer in this experiment were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. When including the lower heating value (LHV) for product hydrogen and carbon monoxide, maximum efficiencies of 84% were achieved at an O2/C ratio of 0.53 and a temperature of 940°C. Significant solid carbon formation was observed at catalyst temperatures below 750°C.

Author(s):  
Cüneyt Ezgi ◽  
M. Turhan Çoban ◽  
Özgün Selvi

Diesel-fueled fuel cell systems can be more clean and efficient energy solutions than internal combustion engines for electric power generation on-board naval surface ships. NATO Navy steam and gas turbine and diesel ships are powered by a naval distillate fuel (NATO symbol F-76). In this study, a 120 kW F-76 diesel-fueled solid oxide fuel cell system (SOFC) as an auxiliary engine on-board a naval surface ship was designed and thermodynamically analyzed. A diesel-fueled SOFC system was compared to diesel-electric generator set in a case naval surface ship.


2021 ◽  
Author(s):  
Andrew Ahn ◽  
Thomas Stone Welles ◽  
Benjamin Akih-Kumgeh ◽  
Ryan J. Milcarek

Abstract Climate change concerns have forced the automotive industry to develop more efficient powertrain technologies, including the potential for fuel cell systems. Solid oxide fuel cells (SOFCs) demonstrate exceptional fuel flexibility and can operate on conventional, widely available hydrocarbon fuels with limited requirements for fuel reformation. Current hybrid powertrains combining fuel cell systems with internal combustion engines (ICEs) fail to mitigate the disadvantages of requiring fuel reformation by placing the engine downstream of the fuel cell system. This work, thus investigates the upstream placement of the engine, eliminating the need for fuel processing catalysts and the heating of complex fuel reformers. The ICE burns a fuel-rich mixture through rapid compression ignition, performing partial oxidation fuel reformation. To test the feasibility of a fuel cell system operating on such ICE exhaust, chemical kinetic model simulations were performed, creating model exhaust containing ∼43.0% syngas. A micro-tubular SOFC (μT-SOFC) was tested for power output with this exhaust, and generated ∼730 mW/cm2 (∼86% of its maximum output obtained with pure hydrogen fuel). Combustion testing was subsequently performed in a test chamber, and despite insufficient equipment limiting the maximum pressure of the combustion chamber, began to validate the model. The exhaust from these tests contained all of the predicted chemical species and, on average, ∼21.8% syngas, but would have resembled the model more closely given higher pressures. This work examines the viability of a novel combined ICE and fuel cell hybrid system, displaying potential for a more cost-effective/efficient solution than current fuel cell systems.


Author(s):  
Ahmed A. Al-Durra ◽  
Stephen Yurkovich ◽  
Yann Guezennec

To be practical in automotive traction applications, fuel cell systems must provide power output levels of performance that rival that of typical internal combustion engines. In so doing, transient behavior is one of the keys for success of fuel cell systems in vehicles. From a model-based control perspective, regulation of the fuel cell system through transients is critical, where the response of a fuel cell system depends on the air and hydrogen (flow and pressure regulation) and heat and water management. The focus of this paper is on the air/fuel supply subsystem in tracking an optimum variable pressurization and air flow for maximum system efficiency during load transients. The control-oriented model developed for this study considers electrochemistry, thermodynamics, and fluid flow principles for a 13-state, nonlinear model of a pressurized fuel cell system. For control purposes, a model reduction is performed by converting some of the model dynamics to simple algebraic relationships. A single reference input, the power demanded by the user, is utilized to produce a corresponding reference air flow and back-pressure valve opening, after passing through a static calculation and a tabulated map. Because of the complexity of the full nonlinear model (used in simulation as the truth model), where several maps are used rather than functional forms, two different control techniques are examined separately, each using a feedforward component. The first technique uses an observer-based linear optimum control which combines a feed-forward approach based on the steady state plant inverse response, coupled to a multi-variable LQR feedback control. An extension of that approach, for control in the full nonlinear range of operation, leads to the second technique, nonlinear gain-scheduled control.


Author(s):  
Daniel B. Olsen ◽  
Bryan D. Willson

Formaldehyde is a hazardous air pollutant (HAP) that is typically emitted from natural gas-fired internal combustion engines as a product of incomplete combustion. The US Environmental Protection Agency (EPA) is currently developing national emission standards to regulate HAP emissions, including formaldehyde, from stationary reciprocating internal combustion engines under Title III of the 1990 Clean Air Act Amendments. This work investigates the effect that variations of engine operating parameters have on formaldehyde emissions from a large bore natural gas engine. The subject engine is a Cooper-Bessemer GMV-4TF two-stroke cycle engine with a 14″ (36 cm) bore and a 14″ (36 cm) stroke. Engine parameter variations investigated include load, boost, ignition timing, inlet air humidity ratio, air manifold temperature, jacket water temperature, prechamber fuel supply pressure, exhaust backpressure, and speed. The data analysis and interpretation is performed with reference to possible formaldehyde formation mechanisms and in-cylinder phenomena.


2021 ◽  
pp. 112-115

Hydrogen fuel constitutes an attainable alternative strategy, which can be implemented in the long term. This strategy can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility. Hydrogen internal combustion engines represent a doable and less expensive solution for using hydrogen than purchasing a new car equipped with a hydrogen fuel cell. Conventional piston engines can be switched to gas operation with relatively little change. This approach is environmentally more viable, as in a short time most vehicles can be switched to emission-free operation. Also, it can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility.


Sign in / Sign up

Export Citation Format

Share Document