Design and Thermodynamic Analysis of an SOFC System for Naval Surface Ship Application

Author(s):  
Cüneyt Ezgi ◽  
M. Turhan Çoban ◽  
Özgün Selvi

Diesel-fueled fuel cell systems can be more clean and efficient energy solutions than internal combustion engines for electric power generation on-board naval surface ships. NATO Navy steam and gas turbine and diesel ships are powered by a naval distillate fuel (NATO symbol F-76). In this study, a 120 kW F-76 diesel-fueled solid oxide fuel cell system (SOFC) as an auxiliary engine on-board a naval surface ship was designed and thermodynamically analyzed. A diesel-fueled SOFC system was compared to diesel-electric generator set in a case naval surface ship.

2021 ◽  
Author(s):  
Andrew Ahn ◽  
Thomas Stone Welles ◽  
Benjamin Akih-Kumgeh ◽  
Ryan J. Milcarek

Abstract Climate change concerns have forced the automotive industry to develop more efficient powertrain technologies, including the potential for fuel cell systems. Solid oxide fuel cells (SOFCs) demonstrate exceptional fuel flexibility and can operate on conventional, widely available hydrocarbon fuels with limited requirements for fuel reformation. Current hybrid powertrains combining fuel cell systems with internal combustion engines (ICEs) fail to mitigate the disadvantages of requiring fuel reformation by placing the engine downstream of the fuel cell system. This work, thus investigates the upstream placement of the engine, eliminating the need for fuel processing catalysts and the heating of complex fuel reformers. The ICE burns a fuel-rich mixture through rapid compression ignition, performing partial oxidation fuel reformation. To test the feasibility of a fuel cell system operating on such ICE exhaust, chemical kinetic model simulations were performed, creating model exhaust containing ∼43.0% syngas. A micro-tubular SOFC (μT-SOFC) was tested for power output with this exhaust, and generated ∼730 mW/cm2 (∼86% of its maximum output obtained with pure hydrogen fuel). Combustion testing was subsequently performed in a test chamber, and despite insufficient equipment limiting the maximum pressure of the combustion chamber, began to validate the model. The exhaust from these tests contained all of the predicted chemical species and, on average, ∼21.8% syngas, but would have resembled the model more closely given higher pressures. This work examines the viability of a novel combined ICE and fuel cell hybrid system, displaying potential for a more cost-effective/efficient solution than current fuel cell systems.


Author(s):  
Michael G. Waller ◽  
Mark R. Walluk ◽  
Thomas A. Trabold

The Environmental Protection Agency (EPA) has estimated that 5% of air pollutants originate from small internal combustion engines (ICE) used in non-automotive applications. While there have been significant advances towards developing more sustainable systems to replace large ICEs, few designs have been implemented with the capability to replace small ICEs such as those used in the residential sector for lawn and garden equipment. Replacing these small residential internal combustion engines presents a unique opportunity for early market penetration of fuel cell technologies. This paper describes the initial efforts to build an innovative residential-scale fuel cell system using propane as its fuel source, and the deployment of this technology in a commonly used device found throughout the U.S. There are three main components to this program, including the development of the propane reforming system, fuel cell operation, and the overall system integration. This paper presents the reforming results of propane catalytic partial oxidation (cPOx). The primary parameters used to evaluate the reformer in this experiment were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. When including the lower heating value (LHV) for product hydrogen and carbon monoxide, maximum efficiencies of 84% were achieved at an O2/C ratio of 0.53 and a temperature of 940°C. Significant solid carbon formation was observed at catalyst temperatures below 750°C.


2015 ◽  
Vol 13 (7) ◽  
pp. 730-735
Author(s):  
Wen-Tang Hong ◽  
Ya-Ling Wu ◽  
Tzu-Hsiang Yen ◽  
Cheng-Nan Huang ◽  
Hsueh-I Tan ◽  
...  

2015 ◽  
Vol 81 ◽  
pp. 400-410 ◽  
Author(s):  
Junxi Jia ◽  
Abuliti Abudula ◽  
Liming Wei ◽  
Baozhi Sun ◽  
Yue Shi

2019 ◽  
Vol 233-234 ◽  
pp. 930-942 ◽  
Author(s):  
Zehan Zhang ◽  
Shuanghong Li ◽  
Yawen Xiao ◽  
Yupu Yang

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1985 ◽  
Author(s):  
Alvaro Fernandes ◽  
Joerg Brabandt ◽  
Oliver Posdziech ◽  
Ali Saadabadi ◽  
Mayra Recalde ◽  
...  

This paper describes the steps involved in the design, construction, and testing of a gasifier-specific solid oxide fuel cell (SOFC) system. The design choices are based on reported thermodynamic simulation results for the entire gasifier- gas cleanup-SOFC system. The constructed SOFC system is tested and the measured parameters are compared with those given by a system simulation. Furthermore, a detailed exergy analysis is performed to determine the components responsible for poor efficiency. It is concluded that the SOFC system demonstrates reasonable agreement with the simulated results. Furthermore, based on the exergy results, the components causing major irreversible performance losses are identified.


Sign in / Sign up

Export Citation Format

Share Document