distillate fuel
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Gloriah Emly Gres Hettige

<p>The present study was initiated under a contract with the New Zealand Defence Scientific Establishment to document the nature, extent and possible sources of microbial contamination of middle distillate fuel ('Dieso' ) held in storage tanks at Devonport, Auckland, and to study possible methods for control of such contamination. Thirty-one fungal species and five bacteria were isolated during the period 1982-1984. The principal contaminants were the fungi Cladosporium resinae (the anamorph of Amorphotheca resinae Parbery), Penicillium corylophilum and Paecilomyces variotii. All three fungi produced dark mycelial mats at the water/diesel fuel interface in laboratory studies. Interactions between these fungi were observed. In the presence of Bushnell.-Haas mineral salts/diesel fuel phases Cladosporium resinae predominated while in seawater/diesel fuel phases Penicillium corylophilum predominated. All New Zealand and Australian isolates of C. resinae grew profusely in Bushnell-Haas mineral salts/diesel fuel phases. The biostatic/biocidal effects of chemicals on the predominant fungi in diesel fuel were studied in laboratory and field tests during 1984-1985. The most effective biocides in controlling C. resinae were benomyl, imazalil and Kathon 886. Imazalil had no effect on Paecilomyces variotii but when used in combination with benomyl a synergistic effect occurred at 100 ppm. Biobor JF, DEGME and EGME performed poorly in laboratory tests regardless of the amount of water present, but gave temporary inhibition of C. resinae in the field tests. Isolates from tanks treated with Biobor JF and DEGME grew well in the presence of these compounds in the laboratory. DML-7 and Proxel AS inhibited C. resinae and Penicillium spp. in both laboratory and field tests at a high dose of 300 ppm but were less effective against P. variotii. The effects of the biocides on engine performance and carbon deposits on engine components were studied. Recommendations for control of microbiological contamination of stored diesel fuel are given. In electron microscope studies no difference was observed in the intracellular structures between jet and diesel fuel isolates of C. resinae and the non-hydrocarbon utilizing Cladosporium cladosporioides.</p>


2021 ◽  
Author(s):  
◽  
Gloriah Emly Gres Hettige

<p>The present study was initiated under a contract with the New Zealand Defence Scientific Establishment to document the nature, extent and possible sources of microbial contamination of middle distillate fuel ('Dieso' ) held in storage tanks at Devonport, Auckland, and to study possible methods for control of such contamination. Thirty-one fungal species and five bacteria were isolated during the period 1982-1984. The principal contaminants were the fungi Cladosporium resinae (the anamorph of Amorphotheca resinae Parbery), Penicillium corylophilum and Paecilomyces variotii. All three fungi produced dark mycelial mats at the water/diesel fuel interface in laboratory studies. Interactions between these fungi were observed. In the presence of Bushnell.-Haas mineral salts/diesel fuel phases Cladosporium resinae predominated while in seawater/diesel fuel phases Penicillium corylophilum predominated. All New Zealand and Australian isolates of C. resinae grew profusely in Bushnell-Haas mineral salts/diesel fuel phases. The biostatic/biocidal effects of chemicals on the predominant fungi in diesel fuel were studied in laboratory and field tests during 1984-1985. The most effective biocides in controlling C. resinae were benomyl, imazalil and Kathon 886. Imazalil had no effect on Paecilomyces variotii but when used in combination with benomyl a synergistic effect occurred at 100 ppm. Biobor JF, DEGME and EGME performed poorly in laboratory tests regardless of the amount of water present, but gave temporary inhibition of C. resinae in the field tests. Isolates from tanks treated with Biobor JF and DEGME grew well in the presence of these compounds in the laboratory. DML-7 and Proxel AS inhibited C. resinae and Penicillium spp. in both laboratory and field tests at a high dose of 300 ppm but were less effective against P. variotii. The effects of the biocides on engine performance and carbon deposits on engine components were studied. Recommendations for control of microbiological contamination of stored diesel fuel are given. In electron microscope studies no difference was observed in the intracellular structures between jet and diesel fuel isolates of C. resinae and the non-hydrocarbon utilizing Cladosporium cladosporioides.</p>


2021 ◽  
Vol 1 (1) ◽  
pp. 29-43
Author(s):  
Valentina Boamah

Oil plays a vital role in the economic growth and sustainability of industries and their corporations. The current study sought to forecast oil demand in Ghana for the next decade. The variables analyzed in this study were Petroleum and other liquids, motor gasoline, distillate fuel, and liquefied petroleum gases (LPG). The study utilized three univariate models; thus, linear regression, exponential regression, and exponential smoothing for forecasting various oil components. The linear regression model was deemed a better fit for the analysis of most of the variables. Furthermore, the findings revealed that the LPG growth rate is faster and requires less time to double in numbers than the other energy sources. Also, the exponential smoothing model was ineffective and inefficient. Overall, the demand for oil components analyzed will follow an increasing pattern from 2017 to 2027.  


Author(s):  
Stéphanie Gagné ◽  
Martin Couillard ◽  
Zuzana Gajdosechova ◽  
Ali Momenimovahed ◽  
Greg Smallwood ◽  
...  

2020 ◽  
Vol 25 (01) ◽  
pp. 24-30
Author(s):  
Deependra Tripathi ◽  
Inderpal Yadav ◽  
Himani Negi ◽  
Raj K. Singh ◽  
Vimal C. Srivastava ◽  
...  

Co(II) porphyrins have been utilized as efficient and selective catalysts for the extractive oxidative desulfurization reaction on the refractory dibenzothiophene (DBT) in [Formula: see text]-dodecane (model middle distillate fuel oil). The acetonitrile was taken as extracting polar solvent and H2O2 was used as oxidant. The reaction optimization was done with respect to DBT:catalyst molar ratio; DBT:H2O2 molar ratio; extracting solvent: CH3CN/[Formula: see text]-dodecane volume ratio; reaction temperature and time. Under the optimized conditions, a maximum of [Formula: see text]98% DBT removal was achieved by using the meso-tetrakis(4[Formula: see text] methoxyphenyl)porphyrinatocobalt(II) as catalyst under mild conditions at 50[Formula: see text]C.


2020 ◽  
pp. 157-186
Author(s):  
G. Murali Dhar ◽  
Mohan S. Rana ◽  
S. K. Maity ◽  
B. N. Srinivas ◽  
T. S. R. Prasada Rao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document