A Review on Non-PGM Cathode Catalysts for Polymer Electrolyte Membrane (PEM) Fuel Cell

Author(s):  
Shiqiang Zhuang ◽  
Xuan Shi ◽  
Eon Soo Lee

In recent years, people attach high attention to the energy problem owing to the energy shortage of the world. Since the price of energy resources significantly increases, it is a necessary requirement to develop new alternative sources of energy to replace non-renewable energy resources. Polymer electrolyte membrane (PEM) fuel cell technology is one of the promising fields of clean and sustainable power, which is based on direct conversion of fuel into electricity. However, at the present moment PEM fuel cell is unable to be successful commercialization. The main factor is the high cost of materials in catalyst layer which is a core part of PEM fuel cell. In order to reduce the overall system cost, developing active, inexpensive non-platinum group metal (non-PGM) electrode catalysts to replace currently used Platinum (Pt)-based catalysts is a necessary and essential requirement. This paper reviews several important kinds of non-PGM electro-catalysts with different elements, such as nitrogen, transition metal, and metal organic frameworks (MOF). Among these catalysts, transition metal nitrogen-containing complexes supported on carbon materials (M-N/C) are considered the most potential oxidation reduction reaction (ORR) catalysts. The main synthetic methods are high temperature heat treating (800–1000°C). The mechanical and electrochemical properties of the final product will be analyzed by several characterization methods. For example, a RRDE test will be used to measure electron transfer number and ORR reactivity, which are the most important electrochemical properties of the new catalyst. And the morphology, particle size, crystal phase and specific surface area can be analyzed with SEM, TEM, XRD and BET methods. Although great improvement has been achieved in non-PGM catalyst area of research, there are still some challenges in both ORR activity and stability of non-PGM catalysts. Consequently, how to improve the ORR activity and stability are the major challenge of non-PGM catalyst research and development. Based on the results achieved in this area, our future research direction is also presented and discussed in this paper.

2017 ◽  
Vol 6 (2) ◽  
pp. 181 ◽  
Author(s):  
Kamaljyoti Talukdar

The present work consists of the modeling and analysis of solar photovoltaic panels integrated with electrolyzer bank and Polymer Electrolyte Membrane (PEM) fuel cell stacks for running different appliances of a hospital located in Kolkata for different climatic conditions. Electric power is generated by an array of solar photovoltaic modules. Excess energy after meeting the requirements of the hospital during peak sunshine hours is supplied to an electrolyzer bank to generate hydrogen gas, which is consumed by the PEM fuel cell stack to support the power requirement during the energy deficit hours. The study reveals that 875 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 with a 178.537 kW electrolyzer and 27 PEM fuel cell stacks, each of 382.372 W, can support the energy requirement of a 200 lights (100 W each), 4 pumps (2 kW each), 120 fans(65 W each) and 5 refrigerators (2 kW each)system operated for 16 hours, 2 hours,15 hours and 24 hours respectively. 123 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 is needed to run the gas compressor for storing hydrogen in the cylinder during sunshine hours.  Keywords: Central Electronics Limited, Electrolyzer, PEM, PM 150, Solar photovoltaic. Article History: Received Feb 5th 2017; Received in revised form June 2nd 2017; Accepted June 28th 2017; Available onlineHow to Cite This Article: Talukdar, K. (2017). Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata,India. International Journal of Renewable Energy Develeopment, 6(2), 181-191.https://dx.doi.org/10.14710/ijred.6.2.181-191


Author(s):  
Jingtian Wu ◽  
Huiyuan Liu ◽  
Yujiang Song ◽  
Yun Wang

Cost is a major barrier to commercialization of polymer electrolyte membrane (PEM) fuel cells. Catalyst layers (CLs) contribute to a major portion of PEM fuel cell cost due to the...


Data ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 47 ◽  
Author(s):  
Andrea Ramírez-Cruzado ◽  
Blanca Ramírez-Peña ◽  
Rosario Vélez-García ◽  
Alfredo Iranzo ◽  
José Guerra

Fuel cells are electrochemical devices that convert the chemical energy stored in fuels (hydrogen for polymer electrolyte membrane (PEM) fuel cells) directly into electricity with high efficiency. Fuel cells are already commercially used in different applications, and significant research efforts are being carried out to further improve their performance and durability and to reduce costs. Experimental testing of fuel cells is a fundamental research activity used to assess all the issues indicated above. The current work presents original data corresponding to the experimental analysis of the performance of a 50 cm2 PEM fuel cell, including experimental results from a load cycling dedicated test. The experimental data were acquired using a dedicated test bench following the harmonized testing protocols defined by the Joint Research Centre (JRC) of the European Commission for automotive applications. With the presented dataset, we aim to provide a transparent collection of experimental data from PEM fuel cell testing that can contribute to enhanced reusability for further research.


Sign in / Sign up

Export Citation Format

Share Document