Performance Evaluation of Gas Turbine-Fuel Cell Hybrid Micro Generation System

Author(s):  
Shinji Kimijima ◽  
Nobuhide Kasagi

Design-point and part-load characteristics of a gas turbine-solid oxide fuel cell hybrid micro generation system, of which total power output is 30 kW, are investigated for its prospective use in the small distributed energy systems. A cycle analysis of the hybrid system has been performed to obtain general strategies of highly efficient operation and control. The method of analysis has been compared with previous results, of which power output values are set in the range from 287 to 519 kW. Then, the part-load performance of the 30 kW system has been evaluated. Two typical operation modes, i.e., constant and variable rotation speed gas turbine operation are considered. It is found that the variable speed mode is more advantageous to avoid performance degradation under part-load conditions. Operating under this mode, despite of 10% adiabatic efficiency drop in the gas turbine components, the generation efficiency can be maintained over 60% (LHV) in the power output range from 50 to 100%.

2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3089-3098
Author(s):  
Xiaoqin Huang ◽  
Fangming Yang

This paper proposes a photovoltaic fuel cell power generation system to convert solar thermal energy into electrical energy after storage. The energy conversion method of the system mainly utilizes hydrogen storage to realize long-term storage of thermal energy, and realizes continuous and stable power supply through the co-operation between the micro-gas turbine and the proton exchange membrane fuel cell. Based on the model of each component, the simulation platform of photovoltaic fuel cell hybrid thermal energy storage control power generation system is built. Based on the design principle and design requirements of photovoltaic power generation system, the photovoltaic fuel cell hybrid power generation system studied in this paper has a simple capacity. Match the design and conduct thermal energy storage management research on the system according to the system operation requirements. The paper studies the management of hybrid fuel energy storage control system for photovoltaic fuel cells. The paper is based on advanced thermal energy storage management for photovoltaic prediction and load forecasting, and through the organic combination of these three layers of thermal energy storage management to complete the thermal energy storage management of the entire system. Finally, the real-time thermal energy storage management based on power tracking control is simulated and analyzed in MATLAB/Simulink simulation environment.


Author(s):  
Martin Henke ◽  
Thomas Monz ◽  
Manfred Aigner

Micro gas turbine (MGT) technology is evolving towards a large variety of novel applications, like weak gas electrification, inverted Brayton cycles and fuel cell hybrid cycles; however, many of these systems show very different dynamic behaviors compared to conventional MGTs. In addition, some applications impose more stringent requirements on transient maneuvers, e.g. to limit temperature and pressure gradients in a fuel cell hybrid cycle. Besides providing operational safety, optimizing system dynamics to meet the variable power demand of modern energy markets is also of increasing significance. Numerical cycle simulation programs are crucial tools to analyze these dynamics without endangering the machines, and to meet the challenges of automatic control design. For these tasks, complete cycle simulations of transient maneuvers lasting several minutes need to be calculated. Moreover, sensitivity analysis and optimization of dynamic properties like automatic control systems require many simulation runs. To perform these calculations in an acceptable timeframe, simplified component models based on lumped volume or one-dimensional discretization schemes are necessary. The accuracy of these models can be further improved by parameter identification, as most novel applications are modifications of well-known MGT systems and rely on proven, characterized components. This paper introduces a modular in-house simulation tool written in Fortran to simulate the dynamic behavior of conventional and novel gas turbine cycles with real-time calculation speed. Thermodynamics, gas composition, heat transfer to the casing and surroundings, shaft rotation and control system dynamics as well as mass and heat storage are simulated together to account for their interactions. The simulation tool is explained in detail, including a description of all component models, coupling of the elements and the ODE-solver. Finally, validation results of the simulator based on measurement data from the DLR Turbec T100 recuperated MGT test rig are presented, including cold start-up and shutdown maneuvers.


Author(s):  
John VanOsdol ◽  
Edward L. Parsons

It has long been recognized that the heat generated from a solid oxide fuel cell (SOFC) is adequate to drive an external heat engine. The combination of the fuel cell plus the heat engine is called a gas turbine fuel cell hybrid power generation system. In most hybrid systems the heat engine consists of a single compressor and single turbine, arranged in either a Brayton cycle or a recuperated Brayton cycle. One characteristic of hybrid power cycles is that the compression costs are substantial. When this cycle is used in a coal fired hybrid system that is configured with an isolated anode stream to isolate and compress CO2, the work to compress the cathode air can greatly exceed the work to compress the CO2. It has also been shown for this same system that using intercooled compression for the cathode air reduces this compression cost. Since there have been no exhaustive studies performed which quantify these effects it is not clear exactly how much reduction in compression cost is possible. In this work we compare three hybrid systems. The first systems has a single compressor and turbine, run at a low pressure ratio as a recuperated Brayton cycle and at high pressure ratio as a simple Brayton cycle (see Figure 1). We then alter the recuperated Brayton cycle using both staged compression and staged expansion. The second system is thus configured with two compressors and two turbines. For this system an intercooler is placed between the compressors and the fuel cell stack is divided into two stacks each followed by a turbine (see Figure 3). Similarly the third system divides the compression and expansion legs of the cycle again into three compressors with intercoolers, and three fuel cell stacks each followed by its own turbine (see Figure 5). As the system configuration is altered by successive divisions of both the compression and expansion legs of the thermal heat engine cycle, the system configuration is transformed from a simple Brayton cycle to a staged approximation to an Ericsson cycle. We show that this new configuration for the gas turbine fuel cell hybrid system not only reduces the high cost of compression, but it makes more heat available for auxiliary system operations. In coal fired systems these auxiliary operations would include pre heating coal for the gasification system, reheating the syngas after cooling or even heating steam for a bottoming cycle.


Author(s):  
Martin Henke ◽  
Thomas Monz ◽  
Manfred Aigner

Micro gas turbine (MGT) technology is evolving toward a large variety of novel applications, such as weak gas electrification, inverted Brayton cycles, and fuel cell hybrid cycles; however, many of these systems show very different dynamic behaviors compared to conventional MGTs. In addition, some applications impose more stringent requirements on transient maneuvers, e.g., to limit temperature and pressure gradients in a fuel cell hybrid cycle. Besides providing operational safety, optimizing system dynamics to meet the variable power demand of modern energy markets is also of increasing significance. Numerical cycle simulation programs are crucial tools to analyze these dynamics without endangering the machines, and to meet the challenges of automatic control design. For these tasks, complete cycle simulations of transient maneuvers lasting several minutes need to be calculated. Moreover, sensitivity analysis and optimization of dynamic properties like automatic control systems require many simulation runs. To perform these calculations in an acceptable timeframe, simplified component models based on lumped volume or one-dimensional discretization schemes are necessary. The accuracy of these models can be further improved by parameter identification, as most novel applications are modifications of well-known MGT systems and rely on proven, characterized components. This paper introduces a modular in-house simulation tool written in fortran to simulate the dynamic behavior of conventional and novel gas turbine cycles. Thermodynamics, gas composition, heat transfer to the casing and surroundings, shaft rotation and control system dynamics as well as mass and heat storage are simulated together to account for their interactions. While the presented models preserve a high level of detail, they also enable calculation speeds up to five times faster than real-time. The simulation tool is explained in detail, including a description of all component models, coupling of the elements and the ODE solver. Finally, validation results of the simulator based on measurement data from the DLR Turbec T100 recuperated MGT test rig are presented, including cold start-up and shutdown maneuvers.


Sign in / Sign up

Export Citation Format

Share Document