Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane

Author(s):  
James D. Heidmann ◽  
Alain J. Kassab ◽  
Eduardo A. Divo ◽  
Franklin Rodriguez ◽  
Erlendur Steinthorsson

A conjugate heat transfer solver has been developed and applied to a realistic film-cooled turbine vane for a variety of blade materials. The solver used for the fluid convection part of the problem is the Glenn-HT general multiblock heat transfer code. The solid conduction module is based on the Boundary Element Method (BEM), and is coupled directly to the flow solver. A chief advantage of the BEM method is that no volumetric grid is required inside the solid — only the surface grid is needed. Since a surface grid is readily available from the fluid side of the problem, no additional gridding is required. This eliminates one of the most time consuming elements of the computation for complex geometries. Two conjugate solution examples are presented — a high thermal conductivity Inconel nickel-based alloy vane case and a low thermal conductivity silicon nitride ceramic vane case. The solutions from the conjugate analyses are compared with an adiabatic wall convection solution. It is found that the conjugate heat transfer cases generally have a lower outer wall temperature due to thermal conduction from the outer wall to the plenum. However, some locations of increased temperature are seen in the higher thermal conductivity Inconel vane case. This is a result of the fact that film cooling is a two-temperature problem, which causes the direction of heat flux at the wall to change over the outer surface. Three-dimensional heat conduction in the solid allows for conduction heat transfer along the vane wall in addition to conduction from outer to inner wall. These effects indicate that the conjugate heat transfer in a complicated geometry such as a film-cooled vane is not governed by simple one-dimensional conduction from the vane surface to the plenum surface, especially when the effects of coolant injection are included.

Author(s):  
Jason E. Albert ◽  
David G. Bogard

Film cooling performance is typically quantified by separating the external convective heat transfer from the other components of the conjugate heat transfer that occurs in turbine airfoils. However, it is also valuable to assess the conjugate heat transfer in terms of the overall cooling effectiveness, which is a parameter of importance to airfoil designers. In the current study, adiabatic film effectiveness and overall cooling effectiveness values were measured for the pressure side of a simplified turbine vane model with three rows of showerhead cooling at the leading edge and one row of body film cooling holes on the pressure side. This was done by utilizing two geometrically identical models made from different materials. Adiabatic film effectiveness was measured using a very low thermal conductivity material, and the overall cooling effectiveness was measured using a material with a higher thermal conductivity selected such that the Biot number of the model matched that of a turbine vane at engine conditions. The theoretical basis for this matched-Biot number modeling technique is discussed in some detail. Additionally, two designs of pressure side body film cooling holes were considered in this study: a standard design of straight, cylindrical holes and an advanced design of “trenched” cooling holes in which the hole exits were situated in a recessed, transverse trench. This study was performed using engine representative flow conditions, including a coolant-to-mainstream density ratio of DR = 1.4 and a mainstream turbulence intensity of Tu = 20%. The results of this study show that adiabatic film and overall cooling effectiveness increase with blowing ratio for the showerhead and pressure side trenched holes. Performance decreases with blowing ratio for the standard holes due to coolant jet separation from the surface. Both body film designs have similar performance at a lower blowing ratio when the standard hole coolant jets remain attached. Far downstream of the cooling holes both designs perform similarly because film effectiveness decays more rapidly for the trenched holes.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Jason E. Albert ◽  
David G. Bogard

Film cooling performance is typically quantified by separating the external convective heat transfer from the other components of the conjugate heat transfer that occurs in turbine airfoils. However, it is also valuable to assess the conjugate heat transfer in terms of the overall cooling effectiveness, which is a parameter of importance to airfoil designers. In the current study, adiabatic film effectiveness and overall cooling effectiveness values were measured for the pressure side of a simplified turbine vane model with three rows of showerhead cooling at the leading edge and one row of body film cooling holes on the pressure side. This was done by utilizing two geometrically identical models made from different materials. Adiabatic film effectiveness was measured using a very low thermal conductivity material, and the overall cooling effectiveness was measured using a material with a higher thermal conductivity selected such that the Biot number of the model matched that of a turbine vane at engine conditions. The theoretical basis for this matched-Biot number modeling technique is discussed in some detail. Additionally, two designs of pressure side body film cooling holes were considered in this study: a standard design of straight, cylindrical holes and an advanced design of “trenched” cooling holes in which the hole exits were situated in a recessed, transverse trench. This study was performed using engine representative flow conditions, including a coolant-to-mainstream density ratio of DR = 1.4 and a mainstream turbulence intensity of Tu = 20%. The results of this study show that adiabatic film and overall cooling effectiveness increase with blowing ratio for the showerhead and pressure side trenched holes. Performance decreases with blowing ratio for the standard holes due to coolant jet separation from the surface. Both body film designs have similar performance at a lower blowing ratio when the standard hole coolant jets remain attached. Far downstream of the cooling holes both designs perform similarly because film effectiveness decays more rapidly for the trenched holes.


Author(s):  
Weiguo Ai ◽  
Thomas H. Fletcher

Numerical computations were conducted to simulate flyash deposition experiments on gas turbine disk samples with internal impingement and film cooling using a CFD code (FLUENT). The standard k-ω turbulence model and RANS were employed to compute the flow field and heat transfer. The boundary conditions were specified to be in agreement with the conditions measured in experiments performed in the BYU Turbine Accelerated Deposition Facility (TADF). A Lagrangian particle method was utilized to predict the ash particulate deposition. User-defined subroutines were linked with FLUENT to build the deposition model. The model includes particle sticking/rebounding and particle detachment, which are applied to the interaction of particles with the impinged wall surface to describe the particle behavior. Conjugate heat transfer calculations were performed to determine the temperature distribution and heat transfer coefficient in the region close to the film-cooling hole and in the regions further downstream of a row of film-cooling holes. Computational and experimental results were compared to understand the effect of film hole spacing, hole size and TBC on surface heat transfer. Calculated capture efficiencies compare well with experimental results.


Author(s):  
James D. Heidmann ◽  
David L. Rigby ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Lewis Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat flux in the showerhead region due to low film effectiveness and high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.


Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


1974 ◽  
Vol 96 (4) ◽  
pp. 524-529 ◽  
Author(s):  
M. F. Blair

Experiments were conducted to determine the film cooling effectiveness and convective heat transfer coefficient distributions on the endwall of a large-scale turbine vane passage. The vane test models employed simulated the passage geometry and upstream cooling slot geometry of a typical first stage turbine. The test models were constructed of low thermal conductivity foam and foil heaters. The tests were conducted at a typical engine Reynolds number but at lower than typical Mach numbers. The film cooling effectiveness distribution for the entire endwall and the heat transfer distribution for the downstream one-half of the endwall were characterized by large gapwise variations which were attributed to a secondary flow vortex.


Author(s):  
Lei Zhao ◽  
Ting Wang

In film cooling heat transfer analysis, one of the core concepts is to deem film cooled adiabatic wall temperature (Taw) as the driving potential for the actual heat flux over the film-cooled surface. Theoretically, the concept of treating Taw as the driving temperature potential is drawn from compressible flow theory when viscous dissipation becomes the heat source near the wall and creates higher wall temperature than in the flowing gas. But in conditions where viscous dissipation is negligible, which is common in experiments under laboratory conditions, the heat source is not from near the wall but from the main hot gas stream; therefore, the concept of treating the adiabatic wall temperature as the driving potential is subjected to examination. To help investigate the role that Taw plays, a series of computational simulations are conducted under typical film cooling conditions over a conjugate wall with internal flow cooling. The result and analysis support the validity of this concept to be used in the film cooling by showing that Taw is indeed the driving temperature potential on the hypothetical zero wall thickness condition, ie. Taw is always higher than Tw with underneath (or internal) cooling and the adiabatic film heat transfer coefficient (haf) is always positive. However, in the conjugate wall cases, Taw is not always higher than wall temperature (Tw), and therefore, Taw does not always play the role as the driving potential. Reversed heat transfer through the airfoil wall from downstream to upstream is possible, and this reversed heat flow will make Tw > Taw in the near injection hole region. Yet evidence supports that Taw can be used to correctly predict the heat flux direction and always result in a positive adiabatic heat transfer coefficient (haf). The results further suggest that two different test walls are recommended for conducting film cooling experiments: a low thermal conductivity material should be used for obtaining accurate Taw and a relative high thermal conductivity material be used for conjugate cooling experiment. Insulating a high-conductivity wall will result in Taw distribution that will not provide correct heat flux or haf values near the injection hole.


Sign in / Sign up

Export Citation Format

Share Document