Numerical Prediction of Film Cooling and Heat Transfer on the Leading Edge of a Rotating Blade With Two Rows Holes in a 1-1/2 Turbine Stage at Design and Off Design Conditions

Author(s):  
Huitao Yang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Numerical simulations were performed to predict the film cooling effectiveness and the associated heat transfer coefficient on the leading edge of a rotating blade in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. Simulations were performed for both the design and off-design conditions to investigate the effects of blade rotation on the leading edge film cooling effectiveness and heat transfer coefficient distributions. It was found that the tilt stagnation line on the leading edge of rotor moves from the pressure side to the suction side, and the instantaneous coolant streamlines shift from the suction side to the pressure side with increasing rotating speed. This trend was supported by the experimental results. The result also showed that the heat transfer coefficient increases, but film cooling effectiveness decreases with increasing rotating speed. In addition, the unsteady characteristics of the film cooling and heat transfer at different time phases, as well as different rotating speeds, were also reported.

Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Rui-dong Wang ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Qi-ling Guo ◽  
...  

Heat transfer of the counter-inclined cylindrical and laid-back holes with and without impingement on the turbine vane leading edge model are investigated in this paper. To obtain the film cooling effectiveness and heat transfer coefficient, transient temperature measurement technique on complete surface based on double thermochromic liquid crystals is used in this research. A semi-cylinder model is used to model the vane leading edge which is arranged with two rows of holes. Four test models are measured under four blowing ratios including cylindrical film holes with and without impingement tube structure, laid-back film holes with and without impingement tube structure. This is the second part of a two-part paper, the first part paper GT2018-76061 focuses on film cooling effectiveness and this study will focus on heat transfer. Contours of surface heat transfer coefficient and laterally averaged result are presented in this paper. The result shows that the heat transfer coefficient on the surface of the leading edge is enhanced with the increase of blowing ratio for same structure. The shape of the high heat transfer coefficient region gradually inclines to span-wise direction as the blowing ratio increases. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region the heat transfer coefficient is relatively higher. Compared with cylindrical hole, laid-back holes give higher heat transfer coefficient. Meanwhile, the introduction of impingement also makes heat transfer coefficient higher compared with cross flow air intake. It is found that the heat transfer of the combination of laid-back hole and impingement tube can be very high under large blowing ratio which should get attention in the design process.


Author(s):  
Jin Young Jeong ◽  
Woobin Kim ◽  
Jae Su Kwak ◽  
Jung Shin Park

Leakage flow between the rotating turbine blade tip and the fixed casing causes high heat loads and thermal stress on the tip and near the tip region. For this study, new squealer tips called partial cavity tips, which combine the advantages of plane and squealer tips, were suggested, and the effects of the cavity shape on the tip heat transfer coefficient and film cooling effectiveness were investigated experimentally in a low speed linear cascade. The suggested blade tips had a flat surface near the leading edge and a squealer cavity from the mid-chord to trailing edge region to achieve the advantages of both blade tip types. The heat transfer coefficient was measured via the 1-D transient heat transfer technique using an IR camera, and the film cooling effectiveness was obtained via the pressure sensitive paint (PSP) technique. Results showed that the heat transfer coefficient and film cooling effectiveness on the partial cavity tips strongly depended on the cavity shape. Near the leading edge, the heat transfer coefficients for the partial cavity tip cases were lower than that for the squealer tip case. However, the heat transfer coefficient on the cavity surface was higher for the partial cavity tip cases. The D10 tip showed a similar distribution of film cooling effectiveness to that of the PLN tip near the leading edge and the DSS tip near the mid-chord region. However, the overall averaged film cooling effectiveness of the DSS tip was higher than that of the D10 tip.


Author(s):  
D. E. Smith ◽  
J. V. Bubb ◽  
O. Popp ◽  
H. Grabowski ◽  
T. E. Diller ◽  
...  

Experiments were performed in a transonic cascade wind tunnel to investigate the film effectiveness and heat transfer coefficient on the suction side of a high-turning turbine rotor blade. The coolant scheme consisted of six rows of staggered, discrete cooling holes on and near the leading edge of the blade in a showerhead configuration. Air was cooled in order to match the density ratios found under engine conditions. Six high-frequency heat flux gauges were installed downstream of the cooling holes on the suction side of the blade. Experiments were performed with and without film and the coolant to freestream total pressure ratio was varied from 1.02 to 1.19. In order to simulate real engine flow conditions, the exit Mach number was set to 1.2 and the exit Reynolds number was set to 5×106. The freestream turbulence was approximately 1%. The heat transfer coefficient was found to increase with the addition of film cooling an average of 14% overall and to a maximum of 26% at the first gauge location. The average film cooling effectiveness over the gauge locations was 25%. Both the heat transfer coefficient and the film cooling effectiveness were found to have only a weak dependence upon the coolant to freestream total pressure ratio at the gauge locations used in this study.


2018 ◽  
Vol 35 (3) ◽  
pp. 291-303 ◽  
Author(s):  
Cun-Liang Liu ◽  
Dan Zhao ◽  
Ying-Ni Zhai ◽  
Hui-Ren Zhu ◽  
Yi-Hong He ◽  
...  

AbstractNumerical simulations have been performed on the film cooling characteristics of counter-inclined structures, which have advantage in manufacturing relative to the usually used parallel-inclined film-hole row structure, on a turbine vane leading edge model. Single row structure and dual-row structure with counter-inclined film holes were applied in the simulation of leading edge film cooling of turbine vane. The effect of jet-interaction between counter-inclined film-hole rows was studied. The distributions of film cooling effectiveness and heat transfer coefficient were obtained at blowing ratios of 1.0 and 2.0. The results of single row structure show that the film cooling performances of counter-inclined film-hole row are not weakened compared to the traditional parallel-inclined film-hole row structure. The film cooling effectiveness of the counter-inclined film-hole row structure decreases with the increase of blowing ratio, while the heat transfer coefficient increases. The jet-interaction in the dual-row film cooling structure has more notable influence on the film cooling effectiveness than the heat transfer coefficient. Compared to the single row case, the interactions between the upstream counter-blowing jets and the downstream jet improve the film coverage performance and reduce the heat transfer intensity of this downstream jet under larger blowing ratio condition.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Jin Young Jeong ◽  
Woobin Kim ◽  
Jae Su Kwak ◽  
Jung Shin Park

Leakage flow between the rotating turbine blade tip and the fixed casing causes high heat loads and thermal stress on the tip and near the tip region. For this study, new squealer tips called partial cavity tips, which combine the advantages of plane and squealer tips, were suggested, and the effects of the cavity shape on the tip heat transfer coefficient and film cooling effectiveness were investigated experimentally in a low-speed linear cascade. The suggested blade tips had a flat surface near the leading edge and a squealer cavity from the mid-chord to trailing edge region to achieve the advantages of both blade tip types. The heat transfer coefficient was measured via the 1-D transient heat transfer technique using an IR camera, and the film cooling effectiveness was obtained via the pressure-sensitive paint (PSP) technique. Results showed that the heat transfer coefficient and film cooling effectiveness on the partial cavity tips strongly depended on the cavity shape. Near the leading edge, the heat transfer coefficients for the partial cavity tip cases were lower than that for the squealer tip case. However, the heat transfer coefficient on the cavity surface was higher for the partial cavity tip cases. The D10 tip showed a similar distribution of film cooling effectiveness to that of the plane (PLN) tip near the leading edge and the double side squealer (DSS) tip near the mid-chord region. However, the overall average film cooling effectiveness of the DSS tip was higher than that of the D10 tip.


Author(s):  
Diganta Narzary ◽  
Kevin Liu ◽  
Je-Chin Han ◽  
Shantanu Mhetras ◽  
Kenneth Landis

Film-cooling and heat transfer characteristics of a gas turbine blade tip with a suction side rail was investigated in a stationary 3-blade rectilinear cascade. Mounted at the end of a blow-down facility the cascade operated at inlet and exit Mach numbers of 0.29 and 0.75, respectively. The rail was marginally offset from the suction side edge of the tip and extended from the leading to the trailing edge. A total of 17 film-cooling holes were placed along the near-tip pressure side surface and 3 on the near-tip leading edge surface with the objective of providing coolant to the tip. The tip surface itself did not carry any film-cooling holes. Relatively high blowing ratios of 2.0, 3.0, 4.0, and 4.5 and three tip gaps of 0.87%, 1.6%, and 2.3% of blade span made up the test matrix. Pressure sensitive paint (PSP) and Thermo-Chromic Liquid Crystal (TLC) were the experimental techniques employed to measure film-cooling effectiveness and heat transfer coefficient, respectively. Results indicated that when the tip gap was increased, film-cooling effectiveness on the tip surface decreased and heat transfer to the tip surface increased. On the other hand, when the blowing ratio was increased, film effectiveness increased but the effect on heat transfer coefficient was relatively small. The highest heat transfer coefficient levels were found atop the suction side rail, especially in the downstream two-thirds of its length whereas the lowest levels were found on the tip floor in the widest section of the blade.


Author(s):  
Mats Kinell ◽  
Esa Utriainen ◽  
Hossein Nadali Najafabadi ◽  
Matts Karlsson ◽  
Botond Barabas

In order to protect a solid surface exposed to high temperature gaseous flows, e.g. gas turbines and rocket engines, a second gas at lower temperature may be introduced into the hot boundary layer, i.e. one obtains a three temperature problem. The impact of the film cooling on a prototype vane due to variation in blowing ratio, the shape of the hole-outlet and position has been experimentally investigated. The semi-infinite and low conductive test object, initially at a uniform temperature, was exposed to a sudden step change in main flow temperature and a time-resolved surface temperature was measured using an IR camera. By assuming constant values of the heat transfer coefficient and the film cooling effectiveness over time, the heat equation was solved using least squares. The prototype vane was tested for different film cooling row positions on the pressure and suction side. Both cylindrical as well as fan shaped holes were investigated with and without showerhead cooling. The resulting heat transfer coefficient and film cooling effectiveness on the pressure side is compared to flat plate studies and to the results from the suction side. Also, the applicability of using superposition on showerhead cooling and on single/double rows is investigated. Furthermore, the results are compared to other published airfoil film cooling experiments and to CFD analysis for which conclusions are drawn on quantitative and qualitative capabilities of this tool.


1992 ◽  
Vol 114 (4) ◽  
pp. 716-723 ◽  
Author(s):  
S. Ou ◽  
A. B. Mehendale ◽  
J. C. Han

The effect of film hole row location on leading edge film cooling effectiveness and heat transfer coefficient under high mainstream turbulence conditions was experimentally determined for flow over a blunt body with semicylinder leading edge and a flat afterbody. Two separate cases of film injection film holes located only at ± 15 or ± 40 deg were studied. The holes were spaced three hole diameters apart in the spanwise direction and inclined 30 and 90 deg to the surface in the spanwise and streamwise directions, respectively. A bar grid (Tu = 5.07 percent), a passive grid (Tu = 9.67 percent), and a jet grid (Tu = 12.9 percent) produced high mainstream turbulence. The incident mainstream Reynolds number based on cylinder diameter was 100,000. Spanwise and streamwise distributions of film effectiveness and heat transfer coefficient in the leading edge and the flat sidewall were obtained for three blowing ratios. The results show mainstream turbulence adversely affects leading edge film effectiveness for the low blowing ratio (B = 0.4), but the effect reduces for higher blowing ratios (B = 0.8 and 1.2). The leading edge heat transfer coefficient increases with mainstream turbulence level for B = 0.4 and 0.8, but the effect is not systematic for B = 1.2. Mainstream turbulence effect is more severe for ±15 deg one-row injection than for ± 40 deg one-row injection. The surface heat load reduction for ± 15 deg one-row injection or ± 40 deg one-row injection is smaller than that for two-row injection.


Author(s):  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Zong-wei Zhang

Experimental investigation has been performed to study the film cooling performance of cylindrical and laid-back film holes on the turbine blade leading edge. Four test models are measured for four blowing ratios to investigate the influence of film hole shape and hole pitch on the film cooling performance. Film cooling effectiveness and heat transfer coefficient are obtained using transient heat transfer measurement technique with double thermochromic liquid crystals. As the blowing ratio increases, the trajectory of jets deviates to the spanwise direction and lifts off gradually. However, more area can benefit from the film protection under large blowing ratio, while the heat transfer coefficient is also higher. The basic distribution features of heat transfer coefficient are similar for all the four models. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while heat transfer coefficient in the jet edge region is relatively higher. For the models with small hole pitch, the laid-back holes only give better film coverage performance than the cylindrical holes under large blowing ratio. For the models with large hole pitch, the advantage of laid-back holes in film cooling effectiveness is more obvious in the upstream region relative to the cylindrical holes. For the cylindrical hole model and the laid-back hole model with the same hole pitch, the laterally averaged heat transfer coefficients are nearly the same with each other under the same blowing ratios. Compared with the models with large hole pitch, the laterally averaged film cooling effectiveness and the laterally averaged heat transfer coefficient are larger for the models with small hole pitch because of larger proportion of film covering area and strong heat transfer region.


Sign in / Sign up

Export Citation Format

Share Document