Prediction of Lapse Rate in Low Pressure Turbines With and Without Modeling of the Laminar-Turbulent Transition

Author(s):  
Mahmoud L. Mansour ◽  
S. Murthy Konan ◽  
Shraman Goswami

Although turbo-machinery main stream flows are predominantly turbulent, the low pressure turbine airfoil surface boundary layer may be either laminar or turbulent. When boundary layer flow is laminar and passes through a zone of adverse pressure gradient, bypass or separation transition can occur via the Tollmien-Schlichting or Kelvin-Helmholtz instabilities. As the gas turbine’s low pressure turbine operating condition changes from sea level take-off to the altitude cruise, Reynolds number is significantly lowered and the turbine’s performance loss increases significantly. This fall-off in performance characteristic is known as lapse rate. Ability to accurately model such phenomenon is a prerequisite for reliable loss prediction and essential for improving low pressure turbine designs. Establishing such capability requires the validation and evaluation of existing low Reynolds number turbulence models, with laminar-turbulent transition modeling capability, against test cases with measured data. This paper summarizes the results of evaluating and validating two 3D viscous “RANS” Reynolds-Averaged Navier-Stokes programs for two test cases with test data. The first test case is the ERCOFTAC’ flat plate with and without pressure gradient, and the second is a Honeywell three-and-half-stage low pressure turbine with available test data at high and low Reynolds number operations. In addition to evaluating the CFD codes against test data, the flat plate test cases were used to establish the meshing and modeling best practice for each code before performing the validation for the Honeywell multistage low pressure turbine. The RANS CFD programs are Numeca’s Fine Turbo and ANSYS/CFX. Numeca’s Fine Turbo employs a two-equation K-ε turbulence model without laminar-turbulent transition modeling capability and the one-equation Spallart-Allmaras turbulence model with laminar-turbulent transition modeling capability. The ANSYS/CFX, on the other hand, employs a two-equation K-ω turbulence model (AKA SST or shear stress transport) with ability to model laminar-turbulent transition. Predictions of the CFD codes are compared with test data and the impact of modeling the laminar-turbulent transition on the prediction accuracy is assessed and presented. Both CFD codes are commercially available and the evaluation presented here is based on users’ prospective that targets the applicability of such predictive tools in the turbine design process.

Author(s):  
Isak Jonsson ◽  
Srikanth Deshpande ◽  
Valery Chernoray ◽  
Oskar Thulin ◽  
Jonas Larsson

Abstract This work presents an experimental and numerical investigation on the laminar-turbulent transition and secondary flow structures in a Turbine Rear Structure (TRS). The study was executed at engine representative Reynolds number and inlet conditions at three different turbine load cases. Experiments were performed in an annular rotating rig with a shrouded low-pressure turbine upstream of a TRS test section. The numerical results were obtained using the SST k–ω turbulence model and the Langtry-Menter γ–θ transition model. The boundary layer transition location at the entire vane suction side is investigated. The location of the onset and the transition length are measured using IR-thermography along the entire vane span. The IR-thermography approach was validated using hot-wire boundary layer measurements. Both experiments and CFD show large variations of transition location along the vane span with strong influences from endwalls and turbine outlet conditions. Both correlate well with traditional transition onset correlations near midspan and show that the transition onset Reynolds number is independent of the acceleration parameter. However, CFD tends to predict an early transition onset in the midspan vane region and a late transition in the hub region. Furthermore, in the hub region, CFD is shown to overpredict the transverse flow and related losses.


2021 ◽  
pp. 1-29
Author(s):  
Isak Jonsson ◽  
Srikanth Deshpande ◽  
Valery Chernoray ◽  
Oskar Thulin ◽  
Jonas Larsson

Abstract This work presents an experimental and numerical investigation on the laminar-turbulent transition and secondary flow structures in a Turbine Rear Structure (TRS). The study was executed at engine representative Reynolds number and inlet conditions at three different turbine load cases. Experiments were performed in an annular rotating rig with a shrouded low-pressure turbine upstream of a TRS test section. The numerical results were obtained using the SST k–ω turbulence model and the Langtry- Menter γ–θ transition model. The boundary layer transition location at the entire vane suction side is investigated. The location of the onset and the transition length are measured using IR thermography along the entire vane span. The IR-thermography approach was validated using hot-wire boundary layer measurements. Both experiments and CFD show large variations of transition location along the vane span with strong influences from endwalls and turbine outlet conditions. Both correlate well with traditional transition onset correlations near midspan and show that the transition onset Reynolds number is independent of the acceleration parameter. However, CFD tends to predict an early transition onset in the midspan vane region and a late transition in the hub region. Furthermore, in the hub region, CFD is shown to overpredict the transverse flow and related losses.


Author(s):  
A. Minot ◽  
I. Salah El-Din ◽  
R. Barrier ◽  
J.-C. Boniface ◽  
J. Marty

The flow within turbomachines is intrinsically complex and involves boundary layer transition, separation and vortices such as the tip leakage vortex and wakes. In a low-pressure turbine, as the Reynolds number can be small, the flow over the suction side is likely to separate leading to the formation of a laminar (or transitional) separation bubble. This flow mechanism can be predicted using Large-Eddy Simulation. However the computation is still very expensive in a design framework. Thus, Reynolds-Averaged Navier-Stokes (RANS) method is used in the present investigation to simulate the flow over the low-pressure turbine airfoil T106C. The laminar-turbulent transition is modeled with the γ-Rθt~ model of Menter and Langtry. Following the work of Minot et al. in which the CFD setup was deeply investigated, the present study aims at evaluating the sensitivity to uncertainties relative to experimental values (freestream turbulence, Reynolds number, incidence flow angle and exit isentropic Mach number) and at improving this model regarding the calibration of several functions using optimization process. The uncertainty study highlights the parameters which mainly influence the isentropic Mach number and loss distributions. The new calibration of the Menter-Langtry model improves significantly the flow prediction over the suction side, except for the open bubble configuration.


Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
Rolf Sondergaard ◽  
John P. Clark ◽  
Mark W. McQuilling

This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-k1-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
Rolf Sondergaard ◽  
John P. Clark ◽  
Mark W. McQuilling

This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-kl-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.


Author(s):  
Harjit S. Hura ◽  
John Joseph ◽  
Dave E. Halstead

This paper reports the results of an experimental and analytical study of Reynolds number (Re) effect on Low Pressure Turbine (LPT) performance. LPTs suffer both a loss in efficiency and flow capacity at altitude due to thicker boundary layers and higher viscous losses. Boundary layer separation can occur in highly loaded and/or high lift designs. The magnitude of the effect is stronger for smaller engines being designed for regional jets which may have cruising altitudes above 50K feet. There is a general lack of knowledge about performance degradation in commercial LPTs under these conditions. A test program was undertaken in a low pressure 3 stage axial turbine to quantify the effect of low Re on efficiency and flow lapse rate. Rig inlet pressures were varied from 0.27E+5 N/m2 (4 psia) to 4.40E+5 N/m2 (65 psia) to achieve over a 15 fold variation in Re. The chord based average Re varied from 30000 to 500000. Efficiency and flow function lapse of over 5% was measured. The fall off was non-linear with a rapid loss occurring at Re below 100000. 3D CFD analysis was conducted in parallel to predict overall performance but also understand loss details within the blade rows. Measured inlet profiles of total pressure, temperature and air angle, and exit static pressure were used as boundary conditions. Leakages and purge flows were modeled as source terms. A turbulence transition model and wall integration grids was used. The CFD results corroborate the test findings on the overall efficiency and flow capacity lapse rate. Analysis of blade row performance at high and low Re shows a sharp increase in profile loss at low Re.


2021 ◽  
Author(s):  
Isak Jonsson ◽  
Srikanth Deshpande ◽  
Valery Chernoray ◽  
Oskar Thulin ◽  
Jonas Larsson

Sign in / Sign up

Export Citation Format

Share Document