Improvement of Laminar-Turbulent Transition Modeling Within a Low-Pressure Turbine

Author(s):  
A. Minot ◽  
I. Salah El-Din ◽  
R. Barrier ◽  
J.-C. Boniface ◽  
J. Marty

The flow within turbomachines is intrinsically complex and involves boundary layer transition, separation and vortices such as the tip leakage vortex and wakes. In a low-pressure turbine, as the Reynolds number can be small, the flow over the suction side is likely to separate leading to the formation of a laminar (or transitional) separation bubble. This flow mechanism can be predicted using Large-Eddy Simulation. However the computation is still very expensive in a design framework. Thus, Reynolds-Averaged Navier-Stokes (RANS) method is used in the present investigation to simulate the flow over the low-pressure turbine airfoil T106C. The laminar-turbulent transition is modeled with the γ-Rθt~ model of Menter and Langtry. Following the work of Minot et al. in which the CFD setup was deeply investigated, the present study aims at evaluating the sensitivity to uncertainties relative to experimental values (freestream turbulence, Reynolds number, incidence flow angle and exit isentropic Mach number) and at improving this model regarding the calibration of several functions using optimization process. The uncertainty study highlights the parameters which mainly influence the isentropic Mach number and loss distributions. The new calibration of the Menter-Langtry model improves significantly the flow prediction over the suction side, except for the open bubble configuration.

Author(s):  
Isak Jonsson ◽  
Srikanth Deshpande ◽  
Valery Chernoray ◽  
Oskar Thulin ◽  
Jonas Larsson

Abstract This work presents an experimental and numerical investigation on the laminar-turbulent transition and secondary flow structures in a Turbine Rear Structure (TRS). The study was executed at engine representative Reynolds number and inlet conditions at three different turbine load cases. Experiments were performed in an annular rotating rig with a shrouded low-pressure turbine upstream of a TRS test section. The numerical results were obtained using the SST k–ω turbulence model and the Langtry-Menter γ–θ transition model. The boundary layer transition location at the entire vane suction side is investigated. The location of the onset and the transition length are measured using IR-thermography along the entire vane span. The IR-thermography approach was validated using hot-wire boundary layer measurements. Both experiments and CFD show large variations of transition location along the vane span with strong influences from endwalls and turbine outlet conditions. Both correlate well with traditional transition onset correlations near midspan and show that the transition onset Reynolds number is independent of the acceleration parameter. However, CFD tends to predict an early transition onset in the midspan vane region and a late transition in the hub region. Furthermore, in the hub region, CFD is shown to overpredict the transverse flow and related losses.


2021 ◽  
pp. 1-29
Author(s):  
Isak Jonsson ◽  
Srikanth Deshpande ◽  
Valery Chernoray ◽  
Oskar Thulin ◽  
Jonas Larsson

Abstract This work presents an experimental and numerical investigation on the laminar-turbulent transition and secondary flow structures in a Turbine Rear Structure (TRS). The study was executed at engine representative Reynolds number and inlet conditions at three different turbine load cases. Experiments were performed in an annular rotating rig with a shrouded low-pressure turbine upstream of a TRS test section. The numerical results were obtained using the SST k–ω turbulence model and the Langtry- Menter γ–θ transition model. The boundary layer transition location at the entire vane suction side is investigated. The location of the onset and the transition length are measured using IR thermography along the entire vane span. The IR-thermography approach was validated using hot-wire boundary layer measurements. Both experiments and CFD show large variations of transition location along the vane span with strong influences from endwalls and turbine outlet conditions. Both correlate well with traditional transition onset correlations near midspan and show that the transition onset Reynolds number is independent of the acceleration parameter. However, CFD tends to predict an early transition onset in the midspan vane region and a late transition in the hub region. Furthermore, in the hub region, CFD is shown to overpredict the transverse flow and related losses.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
Mahmoud L. Mansour ◽  
S. Murthy Konan ◽  
Shraman Goswami

Although turbo-machinery main stream flows are predominantly turbulent, the low pressure turbine airfoil surface boundary layer may be either laminar or turbulent. When boundary layer flow is laminar and passes through a zone of adverse pressure gradient, bypass or separation transition can occur via the Tollmien-Schlichting or Kelvin-Helmholtz instabilities. As the gas turbine’s low pressure turbine operating condition changes from sea level take-off to the altitude cruise, Reynolds number is significantly lowered and the turbine’s performance loss increases significantly. This fall-off in performance characteristic is known as lapse rate. Ability to accurately model such phenomenon is a prerequisite for reliable loss prediction and essential for improving low pressure turbine designs. Establishing such capability requires the validation and evaluation of existing low Reynolds number turbulence models, with laminar-turbulent transition modeling capability, against test cases with measured data. This paper summarizes the results of evaluating and validating two 3D viscous “RANS” Reynolds-Averaged Navier-Stokes programs for two test cases with test data. The first test case is the ERCOFTAC’ flat plate with and without pressure gradient, and the second is a Honeywell three-and-half-stage low pressure turbine with available test data at high and low Reynolds number operations. In addition to evaluating the CFD codes against test data, the flat plate test cases were used to establish the meshing and modeling best practice for each code before performing the validation for the Honeywell multistage low pressure turbine. The RANS CFD programs are Numeca’s Fine Turbo and ANSYS/CFX. Numeca’s Fine Turbo employs a two-equation K-ε turbulence model without laminar-turbulent transition modeling capability and the one-equation Spallart-Allmaras turbulence model with laminar-turbulent transition modeling capability. The ANSYS/CFX, on the other hand, employs a two-equation K-ω turbulence model (AKA SST or shear stress transport) with ability to model laminar-turbulent transition. Predictions of the CFD codes are compared with test data and the impact of modeling the laminar-turbulent transition on the prediction accuracy is assessed and presented. Both CFD codes are commercially available and the evaluation presented here is based on users’ prospective that targets the applicability of such predictive tools in the turbine design process.


2021 ◽  
pp. 1-17
Author(s):  
Maxime Fiore ◽  
Nicolas Gourdain

Abstract This paper presents the Large Eddy Simulation of a Low-Pressure Turbine Nozzle Guide Vane for different Reynolds (Re) and Mach numbers (Ma) with or without inlet turbulence prescribed. The analysis is based on a slice of a LPT blading representative of a midspan flow. The characteristic Re of the LPT can vary by a factor of four between take-off and cruise conditions. In addition, the LPT operates at different Ma and the incident flow can have significant levels of turbulence due to upstream blade wakes. The paper investigates numerically using LES the flow around a LPT blading with three different Reynolds number Re = 175'000 (cruise), 280'000 (mid-level altitude) and 500'000 (take-off) keeping the same characteristic Mach number Ma = 0.2 and three different Mach number Ma = 0.2, 0.5 and 0.8 keeping the same Reynolds number Re= 280'000. These different simulations are performed with 0% Free Stream Turbulence (FST) followed by inlet turbulence (6% FST). The study focuses on different flow characteristics: pressure distribution around the blade, near-wall flow behavior, loss generation and Turbulent Kinetic Energy budget. The results show an earlier boundary layer separation on the aft of the blade suction side when the Re is increased while the free-stream turbulence delays separation. The TKE budget shows the predominant effect of the turbulent production and diffusion in the wake, the axial evolution of these different terms being relatively insensitive to Re and Ma.


Author(s):  
Francesca Satta ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Claudia Schipani

The paper presents the results of an experimental investigation of the wake shed from a high-lift low-pressure turbine profile. Measurement campaigns have been carried out in a three-blade large-scale turbine linear cascade. The Reynolds number based on the chord length has been varied in the range 100000–500000, to differentiate the influence of the boundary layer separation on the wake development. Two Reynolds number conditions, representative of the typical working conditions of a low pressure aeroengine turbine, have been more extensively investigated. Mean velocity and Reynolds stress components within the wake shed from the central blade have been measured across the wake by means of a two-component crossed miniature hotwire probe. The measuring traverses were located at distances ranging between 2 and 100% of the blade chord from the central blade trailing edge. Moreover, wake integral parameters, at the two Reynolds conditions, have been evaluated and compared. Both velocity and total pressure results show a wider wake occurring at the lower Reynolds number, due to the separation affecting the suction side boundary layer. Furthermore, the momentum thickness has been found to be much higher at the lower Reynolds number, due to the higher losses related to the separation bubble occurring on the blade suction side. The Strouhal number associated with the vortex shedding seems to be influenced by the Reynolds number, due to the different conditions of the suction side boundary layers.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


2004 ◽  
Vol 126 (3) ◽  
pp. 406-413 ◽  
Author(s):  
Re´gis Houtermans ◽  
Thomas Coton ◽  
Tony Arts

The present paper is based on an experimental study of a front-loaded very high lift, low pressure turbine blade designed at the VKI. The experiments have been carried out in a low-speed wind tunnel over a wide operating range of incidence and Reynolds number. The aim of the study is to characterize the flow through the cascade in terms of losses, mean outlet flow angle, and secondary flows. At low inlet freestream turbulence intensity, a laminar separation bubble is present, and a prediction model for a separated flow mode of transition has been developed.


Sign in / Sign up

Export Citation Format

Share Document