Experimental Study of Internal Heat Transfer Coefficients in a Rectangular, Ribbed Channel Using a Non-Invasive, Non-Destructive, Transient Inverse Method

Author(s):  
Peter Heidrich ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

This paper describes a non-invasive, non-destructive inverse measurement method that allows one to determine heat transfer coefficients in internal passages of real turbine blades experimentally. For this purpose, a test rig with a fast responding heater was designed to fulfill the requirement of a sudden increase in the air temperature within the internal cooling passages. The outer surface temperatures of the specimen were measured using an infrared camera. To suggest the spatial distribution of the internal heat transfer coefficients from the transient characteristics of the outside surface temperature the inverse heat transfer problem was solved. Differing from former studies which made a thin wall assumption, the conduction inside a finite wall was modelled. Based on a one-dimensional forward solution the best fitting optimization method, the Levenberg-Marquardt algorithm, was chosen. This was verified with artificial data including random noise with positive results. Experimental data were measured for a rectangular H/W = 1:4 aspect ratio channel made of stainless steel with parallel 90° and 45° ribs at Reynolds numbers from 25,000 to 80,000. Results of 90° ribs were compared with simultaneously acquired data using the transient liquid crystal technique. Furthermore the influence of Reynolds number on pitch averaged heat transfer results were evaluated for both rib configurations. These results based on infrared data were compared with earlier studies. It is concluded that the presented experimental measurement method using the transient inverse method could be used to quantitatively determine heat transfer coefficients in internal passages of real turbine blades.

Author(s):  
Nirm V. Nirmalan ◽  
Ronald S. Bunker ◽  
Carl R. Hedlung

A new method has been developed and demonstrated for the non-destructive, quantitative assessment of internal heat transfer coefficient distributions of cooled metallic turbine airfoils. The technique employs the acquisition of full-surface external surface temperature data in response to a thermal transient induced by internal heating/cooling, in conjunction with knowledge of the part wall thickness and geometry, material properties, and internal fluid temperatures. An imaging Infrared camera system is used to record the complete time history of the external surface temperature response during a transient initiated by the introduction of a convecting fluid through the cooling circuit of the part. The transient data obtained is combined with the cooling fluid network model to provide the boundary conditions for a finite element model representing the complete part geometry. A simple 1D lumped thermal capacitance model for each local wall position is used to provide a first estimate of the internal surface heat transfer coefficient distribution. A 3D inverse transient conduction model of the part is then executed with updated internal heat transfer coefficients until convergence is reached with the experimentally measured external wall temperatures as a function of time. This new technique makes possible the accurate quantification of full-surface internal heat transfer coefficient distributions for prototype and production metallic airfoils in a totally non-destructive and non-intrusive manner. The technique is equally applicable to other material types and other cooled/heated components.


Author(s):  
J. Kruekels ◽  
S. Naik ◽  
A. Lerch ◽  
A. Sedlov

The trailing edge sections of gas turbine vanes and blades are generally subjected to extremely high heat loads due to the combined effects of high external accelerating Mach numbers and gas temperatures. In order to maintain the metal temperatures of these trailing edges to a level, which fulfills the mechanical integrity of the parts, highly efficient cooling of the trailing edges is required without increasing the coolant consumption, as the latter has a detrimental effect on the overall gas turbine performance. In this paper the characteristics of the heat transfer and pressure drop of two novel integrated pin bank configurations were investigated. These include a pin bank with conical pins and a pin bank consisting of cylindrical pins and intersecting broken turbulators. As baseline case, a pin bank with cylindrical pins was studied as well. All investigations were done in a converging channel in order to be consistent with the real part. The heat transfer and pressure drop of all the pin banks were investigated initially with the use of numerical predictions and subsequently in a scaled experimental wind tunnel. The experimental study was conducted for a range of operational Reynolds numbers. The TLC (thermochromic liquid crystal) method was used to measure the detailed heat transfer coefficients in scaled Perspex models representing the various pin bank configurations. Pressure taps were located at several positions within the test sections. Both local and average heat transfer coefficients and pressure loss coefficients were determined. The measured and predicted results showed that the local internal heat transfer coefficient increases in the flow direction. This was due to the flow acceleration in the converging channel. Furthermore, both the broken ribs and the conical pin banks resulted in higher heat transfer coefficients compared with the baseline cylindrical pins. The conical pins produced the highest average internal heat transfer coefficients in contrast to the pins with the broken ribs, though this was also associated with a higher pressure drop.


2003 ◽  
Vol 125 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Nirm V. Nirmalan ◽  
Ronald S. Bunker ◽  
Carl R. Hedlund

A new method has been developed and demonstrated for the non-destructive, quantitative assessment of internal heat transfer coefficient distributions of cooled metallic turbine airfoils. The technique employs the acquisition of full-surface external surface temperature data in response to a thermal transient induced by internal heating/cooling, in conjunction with knowledge of the part wall thickness and geometry, material properties, and internal fluid temperatures. An imaging Infrared camera system is used to record the complete time history of the external surface temperature response during a transient initiated by the introduction of a convecting fluid through the cooling circuit of the part. The transient data obtained is combined with the cooling fluid network model to provide the boundary conditions for a finite element model representing the complete part geometry. A simple 1-D lumped thermal capacitance model for each local wall position is used to provide a first estimate of the internal surface heat transfer coefficient distribution. A 3-D inverse transient conduction model of the part is then executed with updated internal heat transfer coefficients until convergence is reached with the experimentally measured external wall temperatures as a function of time. This new technique makes possible the accurate quantification of full-surface internal heat transfer coefficient distributions for prototype and production metallic airfoils in a totally nondestructive and non-intrusive manner. The technique is equally applicable to other material types and other cooled/heated components.


Author(s):  
Fifi N. M. Elwekeel ◽  
Qun Zheng ◽  
Antar M. M. Abdala

Several of industrial applications such as electronic devices, heat exchangers, gas turbine blades, etc. need cooling processes. The internal cooling technique is proper to some applications. In the present work, computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in rectangular ribbed channel using different coolants. Several coolants such as air, steam, air/mist and steam/mist were investigated. The shear stress transport model (SST) is selected by comparing the predictions of different turbulence models with experimental results. The results indicate that the heat transfer coefficients are enhanced in ribbed channel at injection small amount of mist. The heat transfer coefficients of air/mist, steam and steam/mist increase by 12.5%, 49.5% and 107% than that of air, respectively. Furthermore, comparing with air, the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when mist mass fraction increases from 2% to 8%, respectively. For steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the consider range of mist mass fraction.


Sign in / Sign up

Export Citation Format

Share Document