Volume 4: Heat Transfer, Parts A and B
Latest Publications


TOTAL DOCUMENTS

162
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Published By ASMEDC

9780791843147

Author(s):  
Peter Helm ◽  
Alexander Pugachev ◽  
Matthias Neef

Striving for smaller losses in turbomachinery has led to many advancements in the design of seals. Modern sealing concepts such as brush seals hold a great potential to increase the efficiency of both flight engines and stationary turbines. At the same time, in order to maintain stable operating conditions of the rotor, swirl-induced forces must be kept at a minimum in the sealing channels. Therefore, the influence of the permeable and flexible bristle pack of brush seals on the flow around the rotor surface must be known. In this paper the swirl flow in the cavities of two different seal geometries is studied experimentally and numerically. A conventional three-tooth labyrinth serves as a reference. A second seal arrangement with a bristle pack upstream of two teeth is compared with the reference labyrinth. The swirl is evaluated experimentally from total and static pressure measurements in various axial and circumferential positions. Additionally, the axial swirl distribution is calculated using computational fluid dynamics (CFD). Here, the numerical model of the brush seal is based on the porous medium approach and is calibrated using the experimental values of the leakage and the bristle clearance by adjusting the thickness of the bristle pack. The calibrated CFD model is then used to study the impact of the brush seal on the swirl component of the sealing flow. The observed significant decrease of the swirl by the brush seal shows good agreement with the experimental data. The impact of changes in bristle pack clearance on the swirl is also investigated and compared with experimental evidence. The aim is to show that the brush seals have a natural tendency to interrupt seal swirl. They can therefore be used for swirl control in order to create a beneficial impact on the dynamic stability of turbomachines.


Author(s):  
Fabio Ciampoli ◽  
Nicholas J. Hills ◽  
John W. Chew ◽  
Timothy Scanlon

Results of fully unsteady numerical simulations of the flow in a direct transfer pre-swirl system are presented and compared with previously published experimental data from an aero-engine representative rig. The conditions considered include those where strong unsteady effects were observed experimentally. Two different rig builds are considered, with the main difference being in the design of the pre-swirl nozzles. The agreement between calculation and experiment is very good in terms of nozzle and receiver hole discharge coefficients and in identifying significant unsteady effects at certain conditions. Predicted cooling air delivery temperatures are lower than those measured. This may be due to heat transfer and other effects in the rig which have not been modelled. Present unsteady results also show agreement, where appropriate, with earlier steady CFD and an elementary model. Both calculations and measurements show similar performance in terms of delivery temperature for the two different builds studied, despite significant difference in pre-swirl nozzle discharge coefficients for the two builds. The calculations indicate that this is associated with the nozzle velocity coefficient being considerably higher than the discharge coefficient in one case.


Author(s):  
Alessandro Armellini ◽  
Filippo Coletti ◽  
Tony Arts ◽  
Christophe Scholtes

The present contribution addresses the aero-thermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall. The flow is fed through tilted slots on one side wall and exits through straight slots on the opposite side wall. The flow field aerodynamics is investigated in part I of the paper. The reference Reynolds number is defined at the entrance of the test section and set at 67500 for all the experiments. A qualitative flow model is deduced from surface-streamline flow visualizations. Two-dimensional Particle Image Velocimetry measurements are performed in several planes around mid-span of the channel and recombined to visualize and quantify three-dimensional flow features. The jets issued from the tilted slots are characterized and the jet-rib interaction is analyzed. Attention is drawn to the motion of the flow deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained from the finite volume, RANS solver CEDRE.


Author(s):  
Andreas Jeromin ◽  
Christian Eichler ◽  
Berthold Noll ◽  
Manfred Aigner

Numerical predictions of conjugate heat transfer on an effusion cooled flat plate were performed and compared to detailed experimental data. The commercial package CFX® is used as flow solver. The effusion holes in the referenced experiment had an inclination angle of 17 degrees and were distributed in a staggered array of 7 rows. The geometry and boundary conditions in the experiments were derived from modern gas turbine combustors. The computational domain contains a plenum chamber for coolant supply, a solid wall and the main flow duct. Conjugate heat transfer conditions are applied in order to couple the heat fluxes between the fluid region and the solid wall. The fluid domain contains 2.4 million nodes, the solid domain 300,000 nodes. Turbulence modeling is provided by the SST turbulence model which allows the resolution of the laminar sublayer without wall functions. The numerical predictions of velocity and temperature distributions at certain locations show significant differences to the experimental data in velocity and temperature profiles. It is assumed that this behavior is due to inappropriate modeling of turbulence especially in the effusion hole. Nonetheless, the numerically predicted heat transfer coefficients are in good agreement with the experimental data at low blowing ratios.


Author(s):  
Yoji Okita ◽  
Chiyuki Nakamata

This paper presents results of a computational study for the endwall film cooling of an annular nozzle cascade employing a circumferentially asymmetric contoured passage. The investigated geometrical parameters and the flow conditions are set consistent with a generic modern HP-turbine nozzle. Rows of cylindrical film cooling holes on the contoured endwall are arranged with a design practice for the ordinary axisymmetric endwall. The solution domain, which includes the mainflow, cooling hole paths, and the coolant plenum, is discretized in the RANS equations with the realizable k-epsilon model. The calculated flow field shows that the pressure gradients across the passage between the pressure and the suction side are reduced with the asymmetric endwall, and consequently, the rolling up of the inlet boundary layer into the passage vortex is delayed and the separation line has moved further downstream. With the asymmetric endwall, because of the effective suppression of the secondary flow, more uniform film coverage is achieved especially in the rear part of the passage and the laterally averaged effectiveness is also significantly improved in this region. The closer inspection of the calculated thermal field reveals that, with the asymmetric passage, the coolant ejected from the holes are less deflected by the secondary vortices, and it attaches better to the endwall in this rear part.


Author(s):  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
G. D. Booth ◽  
G. D. Lock ◽  
W. N. Dawes

A numerical investigation of the flow and heat transfer characteristics of tip leakage in a typical film cooled industrial gas turbine rotor is presented in this paper. The computations were performed on a rotating domain of a single blade with a clearance gap of 1.28% chord in an engine environment. This standard blade featured two coolant and two dust holes, in a cavity-type tip with a central rib. The computations were performed using CFX 5.6, which was validated for similar flow situations by Krishnababu et al., [18]. These predictions were further verified by comparing the flow and heat transfer characteristics computed in the absence of coolant ejection with computations previously performed in the company (SIEMENS) using standard in-house codes. Turbulence was modelled using the SST k-ω turbulence model. The comparison of calculations performed with and without coolant ejection has shown that the coolant flow partially blocks the tip gap, resulting in a reduction of the amount of mainstream leakage flow. The calculations identified that the main detrimental heat transfer issues were caused by impingement of the hot leakage flow onto the tip. Hence three different modifications (referred as Cases 1 to 3) were made to the standard blade tip in an attempt to reduce the tip gap exit mass flow and the associated impingement heat transfer. The improvements and limitations of the modified geometries, in terms of tip gap exit mass flow, total area of the tip affected by the hot flow and the total heat flux to the tip, are discussed. The main feature of the Case 1 geometry is the removal of the rib and this modification was found to effectively reduce both the total area affected by the hot leakage flow and total heat flux to the tip while maintaining the same leakage mass flow as the standard blade. Case 2 featured a rearrangement of the dust holes in the tip which, in terms of aero-thermal-dynamics, proved to be marginally inferior to Case 1. Case 3, which essentially created a suction-side squealer geometry, was found to be inferior even to the standard cavity tip blade. It was also found that the hot spots which occur in the leading edge region of the standard tip and all modifications contributed significantly to the area affected by the hot tip leakage flow and the total heat flux.


Author(s):  
Michael Huh ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

The focus of the current study was to determine the effects of rib spacing on heat transfer in rotating 1:4 AR channels. In the current study, heat transfer experiments were performed in a two-pass, 1:4 aspect ratio channel, with a sharp bend entrance. The channel leading and trailing walls in the first pass and second pass utilized angled rib turbulators (45° to the mainstream flow). The rib height-to-hydraulic diameter ratio (e/Dh) was held constant at 0.078. The channel was oriented 90° to the direction of rotation. Three rib pitch-to-rib height ratios (P/e) were studied: P/e = 2.5, 5, and 10. Each ratio was tested at five Reynolds numbers: 10K, 15K, 20K, 30K and 40K. For each Reynolds number, experiments were conducted at five rotational speeds: 0, 100, 200, 300, and 400 rpm. Results showed that the sharp bend entrance has a significant effect on the first pass heat transfer enhancement. In the second pass, the rib spacing and rotation effect are reduced. The P/e = 10 case had the highest heat transfer enhancement based on total area, whereas the P/e = 2.5 had the highest heat transfer enhancement based on the projected area. The current study has extended the range of the rotation number (Ro) and local buoyancy parameter (Box) for a ribbed 1:4 aspect ratio channel up to 0.65 and 1.5, respectively. Correlations for predicting heat transfer enhancement, due to rotation, in the ribbed (P/e = 2.5, 5, and 10) 1:4 aspect ratio channel, based on the extended range of the rotation number and buoyancy parameter, are presented in the paper.


Author(s):  
Christoph Starke ◽  
Erik Janke ◽  
Toma´sˇ Hofer ◽  
Davide Lengani

Recent development in commercial CFD codes offers possibilities to include the solid body in order to perform conjugate heat transfer computations for complex geometries. The current paper aims to analyse the differences between a conjugate heat transfer computation and conventional uncoupled approaches where a heat transfer coefficient is first derived from a flow solution and then taken as boundary condition for a thermal conduction analysis of the solid part. Whereas the thermal analyses are done with a Rolls-Royce in-house finite element code, the CFD as well as the conjugate heat transfer computation are done using the new version 8 of the commercial code Fine Turbo from Numeca International. The analysed geometry is a turbine cascade that was tested by VKI in Brussels within the European FP6 project AITEB 2. First, the paper presents the aerodynamic results. The pure flow solutions are validated against pressure measurements of the cascade test. Then, the heat transfer from flow computations with wall temperature boundary conditions is compared to the measured heat transfer. Once validated, the heat transfer coefficients are used as boundary condition for three uncoupled thermal analyses of the blade to predict its surface temperatures in a steady state. The results are then compared to a conjugate heat transfer method. Therefore, a mesh of the solid blade was added to the validated flow computation. The paper will present and compare the results of conventional uncoupled thermal analyses with different strategies for the wall boundary condition to results of a conjugate heat transfer computation. As it turns out, the global results are similar but especially the over-tip region with its complex geometry and flow structure and where effective cooling is crucial shows remarkable differences because the conjugate heat transfer solution predicts lower blade tip temperatures. This will be explained by the missing coupling between the fluid and the solid domain.


Author(s):  
Grzegorz Nowak

This paper discusses the problem of cooling system optimization within a gas turbine airfoil regarding to thermo-mechanical behavior of the component, as well as some economical aspects of turbine operation. The main goal of this paper is to show the possibilities of evolutionary approach application to the cooling system optimization. This method, despite its relatively high computational cost, seems to be a valuable tool to such technical problems. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially cooling is provided with circular passages and heat is transported by convection. During the optimization the number of channels can vary. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages vary with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the airfoil profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides lower stresses, material temperature and indirectly coolant usage.


Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.


Sign in / Sign up

Export Citation Format

Share Document