scholarly journals Development and Applications of a Stage Stacking Procedure

Author(s):  
Sameer Kulkarni ◽  
Mark L. Celestina ◽  
John J. Adamczyk

The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure. This includes a newly-defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to a curve as functions of stage inlet flow coefficient and corrected speed. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressor’s operating range.

Author(s):  
MR Aligoodarz ◽  
A Mehrpanahi ◽  
M Moshtaghzadeh ◽  
A Hashiehbaf

A worldwide effort has been devoted to developing highly efficient and reliable gas turbine engines. There exist many prominent factors in the development of these engines. One of the most important features of the optimal design of axial flow compressors is satisfying the allowable range for various parameters such as flow coefficient, stage loading, the degree of reaction, De-Haller number, etc. But, there are some applicable cases that the mentioned criteria are exceeded. One of the most famous parameters is De-Haller number, which according to literature data should not be kept less than 0.72 in any stage of the axial compressor. A deep insight into the current small- or large-scale axial flow compressors shows that a discrepancy will occur among design criterion for De-Haller number and experimental measurements in which the De-Haller number is less than the design limit but no stall or surge is observed. In this paper, an improved formulation is derived based on one-dimensional modeling for predicting the stall-free design parameter ranges especially stage loading, flow coefficient, etc. for various combinations. It was found that the current criterion is much more accurate than the De-Haller criterion for design purposes.


Aviation ◽  
2012 ◽  
Vol 16 (4) ◽  
pp. 97-102 ◽  
Author(s):  
Mykola Kulyk ◽  
Ivan Lastivka ◽  
Yuri Tereshchenko

The phenomenon of separated flow hysteresis in the process of the streamlining the axial compressor of gas-turbine engines is considered. Generalised results of research on the occurrence of hysteresis in the aerodynamic performance of compressor grids and its influence on the performance of the bladed disks of compressors that operate in real conditions of periodic circular non-uniformity are demonstrated.


2020 ◽  
Vol 107 ◽  
pp. 106307
Author(s):  
Corrado Burberi ◽  
Vittorio Michelassi ◽  
Alberto Scotti del Greco ◽  
Salvatore Lorusso ◽  
Libero Tapinassi ◽  
...  

Author(s):  
Alexander B. Shabarov ◽  
Alexander M. Moiseev ◽  
Mikhail S. Belov ◽  
Andrey A. Achimov

This article studies the problem of determining the technical condition of drive and energetic gas turbine engines (GTE) during acceptance tests that have been repaired at a specialized enterprise. The following descriptions are given: of the bench for testing drive and energetic gas turbine engines; of the bench systems for monitoring and measurement, methods for conducting acceptance tests; of the evaluation the quality of the repaired engine based on its thermogasdynamics parameters; of the processing of measurement results obtained during acceptance tests. The materials of the system of differential (subassembly) diagnostics of GTE are generalized. The authors have considered the features of diagnostics of transient modes of GTE. The authors suggest the transition from the engine node to its elements as one of the ways to further improve the differential diagnostics, which has required developing the technique and system of pressure and temperature measurement at inlet and outlet of stage axial compressor. An algorithm for differential (element-by-element) engine diagnostics is described using the example of an axial compressor stage.


Author(s):  
John Dunham

The history of Sir Frank Whittle’s invention of the jet engine is well known. Somewhat less well known is that the Royal Aircraft Establishment embarked in 1926 on developing the gas turbine as a way of driving a propeller. In 1938, A.R.Howell joined the team as a new graduate, and by 1944 he had played a major role in evolving successful axial compressor design methods, which were used in the first two generations of UK gas turbine engines. He was appointed Head of Aerodynamics Department in the National Gas Turbine Establishment when it was created in 1946, and led that team for twenty years. For many years he was a key figure in compressor design in the UK. He returned to personal research before retiring in 1980, and he died in 1988. This paper summarises his personal research contributions and some of the pioneering research he led in NGTE.


2021 ◽  
pp. 26-31
Author(s):  
A. V. Popov ◽  
A. A. Romanov

One of the reasons for the early decommissioning of gas turbine engines (before the specified resources and service life are depleted) is the occurrence of unstable operating modes, namely surge. Surge is a violation of the stable operation of gas turbine engines, due to the occurrence of longitudinal self-oscillations of the flow in the entire airgas path of the gas turbine engine, resulting from the loss of dynamic stability of the flow, accompanied by a sharp drop in thrust and powerful vibration that can destroy the engine. An acoustic method for diagnosing the presurge state of gas turbine engines has been developed, based on an assessment of the change in the distribution of the amplitudes of a vibroacoustic signal, which is characterized by the use of an invariant characterizing the normal distribution of random variables, which makes it possible to quickly assess the presurge state regardless of the type, size and history of engine operation, which makes this method universal. The use of the developed acoustic method for determining the presurge state of gas turbine engines makes it possible to avoid the need for noise filtering, which at the present stage of development of presurge condition diagnostics systems based on vibration analysis plays a huge role. To implement the developed acoustic method, a hardware-software complex was created. The antisurge system can be used in automatic mode by installing hazardous and critically dangerous zones in the program for informative parameters and invariants characterizing the occurrence of surge.


Author(s):  
Sandro B. Ferreira ◽  
Marco Antoˆnio R. do Nascimento

The use of syngas from gasified biomass as fuel for electric power generation based on gas turbine engines has been seriously studied over the past last two decades. Few experimental power plants have been built around the world. A small review of the use of syngas from gasified biomass and a cleaning system for gas turbine engines are presented. In this paper a computational program was presented and validated to simulate the design and off-design performance analysis of simple cycle gas turbine engines with one and two shafts. The aim was to assess the behavior and performance of the gas turbine engine without accounting for auxiliary syngas fuel compressor when the gasifier is atmospheric. It shows the behavior and performance at the off design condition of these two types of hypothetic gas turbine engines. The two engines were designed to use kerosene as fuel and at off-design conditions, and they were run using syngas from gasified biomass. The results show that the running line in the compressor characteristic moves towards the surge line and that the performance changes when the engine runs with the syngas.


Sign in / Sign up

Export Citation Format

Share Document