Mean and Turbulent Velocity Profile Measurements on the Suction Side of a Film Cooled Turbine Vane

Author(s):  
John W. McClintic ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

Boundary layer velocity and turbulence profiles were measured on the suction side of a scaled up, film-cooled turbine vane airfoil. There have been a number of previous studies of the velocity profile on a turbine vane, but few have taken velocity profile data with film cooling, and none have taken such data on the suction side of the vane. Velocity and turbulence profile data were taken at two locations on the suction side of the vane — one at a high curvature region and one further downstream in a low curvature region. Data were collected for high (20%) and low (0.5%) mainstream turbulence conditions. For the upstream, high curvature location, velocity and turbulence profiles were found with and without the showerhead blowing and within and outside of the merged showerhead coolant jet. The data for the low curvature, downstream location was taken with injection from the showerhead alone, a second upstream row of holes alone, and the combination of the two cases. It was found that the presence of an active upstream row of holes thickens the boundary layer and increases urms both within and beyond the extent of the boundary layer. Span-wise variations showed that these effects are strongest within the core of the coolant jets. At the downstream location, the boundary layer velocity profile was most strongly influenced by the row of holes immediately upstream of that location. Finally, turbulence integral length scale data showed the effect of large scale mainstream turbulence penetrating the boundary layer. The increase in turbulence, thickening of the boundary layer, and large scale turbulence all play important roles in row to row coolant interactions and affect the film cooling effectiveness.

2005 ◽  
Vol 128 (1) ◽  
pp. 62-70 ◽  
Author(s):  
N. D. Cardwell ◽  
N. Sundaram ◽  
K. A. Thole

To maintain acceptable turbine airfoil temperatures, film cooling is typically used whereby coolant, extracted from the compressor, is injected through component surfaces. In manufacturing a turbine, the first stage vanes are cast in either single airfoils or double airfoils. As the engine is assembled, these singlets or doublets are placed in a turbine disk in which there are inherent gaps between the airfoils. The turbine is designed to allow outflow of high-pressure coolant rather than hot gas ingestion. Moreover, it is quite possible that the singlets or doublets become misaligned during engine operation. It has also become of interest to the turbine community as to the effect of corrosion and deposition of particles on component heat transfer. This study uses a large-scale turbine vane in which the following two effects are investigated: the effect of a midpassage gap on endwall film cooling and the effect of roughness on endwall film cooling. The results indicate that the midpassage gap was found to have a significant effect on the coolant exiting from the combustor-turbine interface slot. When the gap is misaligned, the results indicate a severe reduction in the film-cooling effectiveness in the case where the pressure side endwall is below the endwall associated with the suction side of the adjacent vane.


Author(s):  
N. D. Cardwell ◽  
N. Sundaram ◽  
K. A. Thole

To maintain acceptable turbine airfoil temperatures, film-cooling is typically used whereby coolant, extracted from the compressor, is injected through component surfaces. In manufacturing a turbine, the first stage vanes are cast in either single airfoils or double airfoils. As the engine is assembled, these singlets or doublets are placed in a turbine disk in which there are inherent gaps between the airfoils. The turbine is designed to allow outflow of high pressure coolant rather than hot gas ingestion. Moreover, it is quite possible that the singlets or doublets become misaligned during engine operation. It has also become of interest to the turbine community as to the effect of corrosion and deposition of particles on component heat transfer. This study uses a large scale turbine vane in which the following two effects are investigated: the effect of a mid-passage gap on endwall film-cooling and the effect of roughness on endwall film-cooling. The results indicate that the mid-passage gap was found to have a significant effect on the coolant exiting from the combustor-turbine interface slot. When the gap is misaligned, the results indicate a severe reduction in the film-cooling effectiveness in the case where the pressure side endwall is below the endwall associated with the suction side of the adjacent vane.


Author(s):  
Frederick T. Davidson ◽  
Joshua E. Bruce-Black ◽  
David G. Bogard ◽  
David R. Johns

The effects on film cooling performance due to the use of angled slots with impinging cylindrical holes were studied on the suction side of a scaled-up turbine vane. Various configurations were explored to fully characterize the effects of varying the depth of the slot and the pitch between the impinging feed holes within the slot. Experiments were also conducted to evaluate the effect of local curvature at the point of coolant injection. Each test was conducted with and without an upstream boundary layer trip to determine the effects of changing the approach boundary layer. Rows of discrete round and shaped holes were tested for comparison with the slots. The study of varying slot geometries showed that increasing the depth of the slot and decreasing the pitch between the impinging cylindrical holes enhanced film cooling effectiveness. The optimum slot configuration was found to have comparable adiabatic effectiveness with the better shaped holes configuration at lower blowing ratios, and superior performance at higher blowing ratios. The results pertaining to the local curvature and approach flow showed a significant effect on the round hole performance, but had negligible effect on the angled slot and shaped hole configurations.


2000 ◽  
Author(s):  
Marcia I. Ethridge ◽  
J. Michael Cutbirth ◽  
David G. Bogard

Abstract The process of film cooling is known to severely disturb the boundary layer around a turbine airfoil. Since most film-cooled airfoils have more than one injection station, the flow field approaching a row of film cooling holes could be altered by the presence of an upstream cooling station. To investigate this possibility, an experimental investigation was conducted on the suction side of a scaled-up turbine vane. Adiabatic effectiveness measurements were made downstream of a single row of cooling holes both with and without the upstream showerhead holes operating. A range of suction side blowing ratios, 0.3 ≤ M ≤ 1.3, were investigated with large-scale mainstream turbulence intensities of Tu∞ = 0.5% and Tu∞ = 21%. The effects of the showerhead coolant were evaluated at an engine-typical showerhead blowing ratio of Msh = 1.6, with three of the six rows of cooling holes in the showerhead directed towards the suction side of the airfoil. Experiments were conducted with a coolant-to-mainstream density ratio of DR = 1.6. An infrared camera was used to obtain spatially-resolved surface temperature measurements, which were corrected for conduction effects and converted to adiabatic effectiveness. The results showed that showerhead coolant had a strong impact on suction side adiabatic effectiveness levels under low mainstream turbulence. Although effectiveness levels increased with the showerhead operating, the suction side coolant jets increased dispersion of the showerhead coolant. Under high mainstream turbulence conditions, there was very little interaction between the showerhead coolant and the suction side coolant jets. Adiabatic effectiveness levels were considerably lower than those for the low turbulence case, which was partially due to increased dispersion of the showerhead coolant upstream of the suction side holes. The superposition model over-predicted adiabatic effectiveness levels under low mainstream turbulence conditions, but was very effective in predicting the combined performance of the showerhead and the suction side cooling holes under high mainstream turbulence conditions.


Author(s):  
Christian Saumweber ◽  
Achmed Schulz

A comprehensive set of generic experiments is conducted to investigate the interaction of film cooling rows. Five different film cooling configurations are considered on a large scale basis each consisting of two rows of film cooling holes in staggered arrangement. The hole pitch to diameter ratio within each row is kept constant at P/D = 4. The spacing between the rows is either x/D = 10, 20, or 30. Fanshaped holes or simple cylindrical holes with an inclination angle of 30 deg. and a hole length of 6 hole diameters are used. With a hot gas Mach number of Mam = 0.3, an engine like density ratio of ρc/ρm = 1.75, and a freestream turbulence intensity of Tu = 5.1% are established. Operating conditions are varied in terms of blowing ratio for the upstream and, independently, the downstream row in the range 0.5<M<2.0. The results illustrate the importance of considering ejection into an already film cooled boundary layer. Adiabatic film cooling effectiveness and heat transfer coefficients are significantly increased. The decay of effectiveness with streamwise distance is much less pronounced downstream of the second row primarily due to pre-cooling of the boundary layer by the first row of holes. Additionally, a comparison of measured effectiveness data with predictions according to the widely used superposition model of Sellers [11] is given for two rows of fanshaped holes.


Author(s):  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Alexander MirzaMoghadam ◽  
Ardeshir Riahi

This paper studies the effect of transonic flow velocity on local film cooling effectiveness distribution of turbine vane suction side, experimentally. A conduction-free Pressure Sensitive Paint (PSP) method is used to determine the local film cooling effectiveness. Tests were performed in a five-vane annular cascade at Texas A&M Turbomachinery laboratory blow-down flow loop facility. The exit Mach numbers are controlled to be 0.7, 0.9, and 1.1, from subsonic to transonic flow conditions. Three foreign gases N2, CO2 and Argon/SF6 mixture are selected to study the effects of three coolant-to-mainstream density ratios, 1.0, 1.5, and 2.0 on film cooling. Four averaged coolant blowing ratios in the range, 0.7, 1.0, 1.3 and 1.6 are investigated. The test vane features 3 rows of radial-angle cylindrical holes around the leading edge, and 2 rows of compound-angle shaped holes on the suction side. Results suggest that the PSP technique is capable of producing clear and detailed film cooling effectiveness contours at transonic condition. The effects of coolant to mainstream blowing ratio, density ratio, and exit Mach number on the vane suction-surface film cooling distribution are obtained, and the consequence results are presented and explained in this investigation.


Author(s):  
Forrest E. Ames

A four vane subsonic cascade was used to investigate the influence of film injection on vane heat transfer distributions in the presence of high turbulence. The influence of high turbulence on vane film cooling effectiveness and boundary layer development was also examined in part II of this paper. A high level, large scale inlet turbulence was generated for this study with a mock combustor (12 %) and was used to contrast results with a low level (1 %) of inlet turbulence. The three geometries chosen to study in this investigation were one row and two staggered rows of downstream cooling on both the suction and pressure surfaces in addition to a showerhead array. Film cooling was found to have only a moderate influence on the heat transfer coefficients downstream from arrays on the suction surface where the boundary layer was turbulent. However, film cooling was found to have a substantial influence on heat transfer downstream from arrays in laminar regions of the vane such as the pressure surface, the stagnation region, and the near suction surface. Generally, heat transfer augmentation was found to scale on velocity ratio. In relative terms, the augmentation in the laminar regions for the low turbulence case was found to be higher than the augmentation for the high turbulence case. The absolute levels of heat transfer were always found to be the highest for the high turbulence case.


Author(s):  
Joshua E. Bruce-Black ◽  
Frederick T. Davidson ◽  
David G. Bogard ◽  
David R. Johns

Turbine component film cooling is most effective when using a continuous slot to introduce coolant to the surface. However, this is not practical due to the structural weakness that would be inherent with a continuous slot. In this study, several slot-like designs are investigated to establish the film cooling effectiveness. These slot configurations extended only a partial distance through the simulated turbine vane wall, and were fed with impinging cylindrical holes. The configurations were studied on the suction side of a scaled-up turbine vane. In this study varying slot widths, discrete and continuous slots, and diffusing the coolant flow within the slot prior to it being emitted onto the surface of the vane were investigated. Rows of discrete round and shaped holes were also tested for comparison with the slots. The study of varying slot geometries showed that decreasing the width of the slots led to a substantial increase in adiabatic effectiveness. An internal coolant diffusion technique showed promise by maintaining performance levels while potentially providing a design configuration that more readily meets structural demands in real world operating conditions. The coolant flow characteristics were also studied through the use of thermal profiles measurements. These thermal profiles showed significant mainstream ingestion on the top surface of the slot prior to the coolant emitting onto the surface of the vane.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Ruwan P. Somawardhana ◽  
David G. Bogard

Recent studies have shown that film cooling with holes embedded in a shallow trench significantly improves cooling performance. In this study, the performance of shallow trench configurations was investigated for simulated deteriorated surface conditions, i.e., increased surface roughness and near-hole obstructions. Experiments were conducted on the suction side of a scaled-up simulated turbine vane. Results from the study indicated that as much as 50% degradation occurred with upstream obstructions, but downstream obstructions actually enhanced film cooling effectiveness. However, the transverse trench configuration performed significantly better than the traditional cylindrical holes, both with and without obstructions and almost eliminated the effects of both surface roughness and obstructions.


1977 ◽  
Vol 99 (1) ◽  
pp. 77-82 ◽  
Author(s):  
R. E. Mayle ◽  
F. C. Kopper ◽  
M. F. Blair ◽  
D. A. Bailey

The effects of streamline curvature on film cooling effectiveness are discussed. Experiments for air discharged through a slot and into a turbulent boundary layer along a flat, convex, and concave surface are described. Adiabatic wall effectiveness measurements on each surface for several blowing rates are presented. Boundary-layer velocity and temperature measurements are also presented for one of the blowing rates. Compared to the results for the flat surface, convex curvature is found to increase the adiabatic wall effectiveness whereas concave curvature is found to be detrimental.


Sign in / Sign up

Export Citation Format

Share Document