Experimental and Numerical Investigation of Effusion Cooling for High Pressure Turbine Components: Part 2 — Numerical Results

Author(s):  
Gustavo A. Ledezma ◽  
Julienne Lachance ◽  
Guanghua Wang ◽  
Anquan Wang ◽  
Gregory M. Laskowski

In this study, numerical simulations of adiabatic film cooling effectiveness are carried out on a round hole effusion cooling flat plate configuration. The numerical method used was a Large Eddy Simulation (LES) with periodic unstructured hexa-dominant grids. The numerical 2-D surface effectiveness and the laterally-averaged effectiveness are compared against the Pressure Sensitive Paint (PSP) results obtained in Part 1 of this paper. The numerical runs were done for a constant gas path Mach (Ma) number of 0.1 and 3 film blowing ratios in the 0.6–1.0 range. The objective is to demonstrate the ability of the LES method to capture the physics of η over a relevant range of blowing ratios. The LES predictions of laterally-averaged and local film effectiveness show tremendous improvement with respect to steady state Reynolds Averaged Navier Stokes (RANS) model results. Furthermore the LES data agrees very well with the experimental data.

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Weihong Li ◽  
Wei Shi ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

The effects of hole length-to-diameter ratio and compound angle on flat plate film cooling effectiveness are investigated from an experimental and numerical view. Film cooling effectiveness measurements are performed for seven blowing ratios (M) ranging from 0.3 to 2, five-hole length-to-diameter ratios (L/D) from 0.5 to 5, and two compound angles (β: 0 deg and 45 deg) using pressure-sensitive paint (PSP) technique. Results indicate that discrete holes with L = 0.5 and 1 show highest film cooling effectiveness regardless of compound angle. Round hole generally shows an increasing trend as L increases from 2 to 5, while compound angle hole shows a complex trend concerning with blowing ratios (BRs) and length-to-diameter ratios. Compound angle enhances film cooling effectiveness with high blowing ratios and length-to-diameter ratios. In a parallel effort, large eddy simulation (LES) approach is employed to solve the flow field and visualize vortex structures of intube and mainstream regions. It is demonstrated that the counter-rotating vortex pair (CRVP) which is observed in the time-averaged flow field is originated in different vortex structures with varying blowing ratios and length-to-diameter ratios. Scalar field transportation features are also investigated to clarify how different vortex structures affect the temperature distribution and the film cooling effectiveness.


Author(s):  
A. Suryanarayanan ◽  
B. Ozturk ◽  
M. T. Schobeiri ◽  
J. C. Han

Film cooling effectiveness is measured on a rotating turbine blade platform for coolant injection through discrete holes using pressure sensitive paint technique (PSP). Most of the existing literatures provide information only for stationary end-walls. The effects of rotation on the platform film cooling effectiveness are not well documented. Hence, the existing 3-stage turbine research facility at TPFL, Texas A&M University was re-designed and installed to enable coolant gas injection on the 1st stage rotor platform. Two distinct coolant supply loops were incorporated into the rotor to facilitate separate feeds for upstream cooling using stator-rotor gap purge flow and downstream discrete-hole film cooling. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the 1st stage rotor platform due to coolant gas injection through nine discrete holes located downstream within the passage region. Film cooling effectiveness is measured for turbine rotor frequencies of 2400rpm, 2550rpm and 3000rpm corresponding to rotation numbers of Ro = 0.18, 0.19 and 0.23 respectively. For each of the turbine rotational frequencies, film cooling effectiveness is determined for average film-hole blowing ratios of Mholes = 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0. To provide a complete picture of hub cooling under rotating conditions, simultaneous injection of coolant gas through upstream stator-rotor purge gap and downstream discrete film-hole is also studied. The combined tests are conducted for gap purge flow corresponding to coolant to mainstream mass flow ratio of MFR = 1% with three downstream film-hole blowing ratios of Mholes = 0.75, 1.0 and 1.25 for each of the three turbine speeds. The results for combined upstream stator-rotor gap purge flow and downstream discrete holes provide information about the optimum purge flow coolant mass, average coolant hole blowing ratios for each rotational speed and coolant injection location along the passage to obtain efficient platform film cooling.


2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract The use of numerical simulations to design and optimize turbine vane cooling requires precise prediction of the fluid mechanics and film cooling effectiveness. This results in the need to numerically identify and assess the various origins of the losses taking place in such systems and if possible in engine representative conditions. Large-Eddy Simulation (LES) has shown recently its ability to predict turbomachinery flows in well mastered academic cases such as compressor or turbine cascades. When it comes to industrial representative configurations, the geometrical complexities, high Reynolds and Mach numbers as well as boundary condition setup lead to an important increase of CPU cost of the simulations. To evaluate the capacity of LES to predict film cooling effectiveness as well as to investigate the loss generation mechanisms in a turbine vane in engine representative conditions, a wall-modeled LES of the FACTOR film-cooled nozzle is performed. After the comparison of integrated values to validate the operating point of the vanes, the mean flow structure is investigated. In the coolant film, a strong turbulent mixing process between coolant and hot flows is observed. As a result, the spatial distribution of time-averaged vane surface temperature is highly heterogeneous. Comparisons with the experiment show that the LES prediction fairly reproduces the spatial distribution of the adiabatic film effectiveness. The loss generation in the configuration is then investigated. To do so, two methodologies, i.e, performing balance of total pressure in the vanes wakes as mainly used in the literature and Second Law Analysis (SLA) are evaluated. Balance of total pressure without the contribution of thermal effects only highlights the losses generated by the wakes and secondary flows. To overcome this limitation, SLA is adopted by investigating loss maps. Thanks to this approach, mixing losses are shown to dominate in the coolant film while aerodynamic losses dominate in the coolant pipe region.


2006 ◽  
Vol 128 (9) ◽  
pp. 879-888 ◽  
Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions are measured on the leading edge of a rotating gas turbine blade with two rows (pressure-side row and suction-side row from the stagnation line) of holes aligned to the radial axis using the pressure sensitive paint (PSP) technique. Film cooling effectiveness distributions are obtained by comparing the difference of the measured oxygen concentration distributions with air and nitrogen as film cooling gas respectively and by applying the mass transfer analogy. Measurements are conducted on the first-stage rotor blade of a three-stage axial turbine at 2400rpm (positive off-design), 2550rpm (design), and 3000rpm (negative off-design), respectively. The effect of three blowing ratios is also studied. The blade Reynolds number based on the axial chord length and the exit velocity is 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and outlet Mach numbers are 0.1 and 0.3, respectively. The film cooling effectiveness distributions are presented along with discussions on the influence of rotational speed (off design incidence angle), blowing ratio, and upstream nozzle wakes around the leading edge region. Results show that rotation has a significant impact on the leading edge film cooling distributions with the average film cooling effectiveness in the leading edge region decreasing with an increase in the rotational speed (negative incidence angle).


2005 ◽  
Vol 127 (5) ◽  
pp. 521-530 ◽  
Author(s):  
Jaeyong Ahn ◽  
Shantanu Mhetras ◽  
Je-Chin Han

Effects of the presence of squealer, the locations of the film-cooling holes, and the tip-gap clearance on the film-cooling effectiveness were studied and compared to those for a plane (flat) tip. The film-cooling effectiveness distributions were measured on the blade tip using the pressure-sensitive paint technique. Air and nitrogen gas were used as the film-cooling gases, and the oxygen concentration distribution for each case was measured. The film-cooling effectiveness information was obtained from the difference of the oxygen concentration between air and nitrogen gas cases by applying the mass transfer analogy. Plane tip and squealer tip blades were used while the film-cooling holes were located (a) along the camber line on the tip or (b) along the tip of the pressure side. The average blowing ratio of the cooling gas was 0.5, 1.0, and 2.0. Tests were conducted with a stationary, five-bladed linear cascade in a blow-down facility. The free-stream Reynolds number, based on the axial chord length and the exit velocity, was 1,138,000, and the inlet and the exit Mach numbers were 0.25 and 0.6, respectively. Turbulence intensity level at the cascade inlet was 9.7%. All measurements were made at three different tip-gap clearances of 1%, 1.5%, and 2.5% of blade span. Results show that the locations of the film-cooling holes and the presence of squealer have significant effects on surface static pressure and film-cooling effectiveness, with film-cooling effectiveness increasing with increasing blowing ratio.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Akhilesh P. Rallabandi ◽  
Shiou-Jiuan Li ◽  
Je-Chin Han

The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke-wheel wake generator) on the modeled rotor blade is studied using the pressure sensitive paint (PSP) mass-transfer analogy method. Emphasis of the current study is on the midspan region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film-cooling holes. The blade also has radial shower-head leading edge film-cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side and 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film-cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Chao-Cheng Shiau ◽  
Andrew F Chen ◽  
Je-Chin Han ◽  
Salam Azad ◽  
Ching-Pang Lee

Researchers in gas turbine field take great interest in the cooling performance on the first-stage vane because of the complex flow characteristics and intensive heat load that comes from the exit of the combustion chamber. A better understanding is needed on how the coolant flow interacts with the mainstream and the resulting cooling effect in the real engine especially for the first-stage vane. An authentic flow channel and condition should be achieved. In this study, three full-scale turbine vanes are used to construct an annular-sector cascade. The film-cooling design is attained through numerous layback fan-shaped and cylindrical holes dispersed on the vane and both endwalls. With the three-dimensional vane geometry and corresponding wind tunnel design, the true flow field can thus be simulated as in the engine. This study targets the film-cooling effectiveness on the inner endwall (hub) of turbine vane. Tests are performed under the mainstream Reynolds number 350,000; the related inlet Mach number is 0.09; and the freestream turbulence intensity is 8%. Two variables, coolant-to-mainstream mass flow ratios (MFR = 2%, 3%, and 4%) and density ratios (DR = 1.0 and 1.5), are examined. Pressure-sensitive paint (PSP) technique is utilized to capture the detail contour of film-cooling effectiveness on the inner endwall and demonstrate the coolant trace. The presented results serve as a comparison basis for other sets of vanes with different cooling designs. The results are expected to strengthen the promise of PSP technique on evaluating the film-cooling performance of the engine geometries.


Sign in / Sign up

Export Citation Format

Share Document