Overall Cooling Effectiveness on a Flat Plate With Both Film Cooling and Impingement Cooling in Hot Gas Condition

Author(s):  
Bo Shi ◽  
Jia Li ◽  
Mingfei Li ◽  
Jing Ren ◽  
Hongde Jiang

This paper presents experimental results of temperature distribution on a flat plate with both film cooling and impingement cooling configurations. The film plate consists of 4 rows of round holes injected at an angle of 30°. The impingement plate has a 6×6 jet array. Mainstream temperature is 100°C, and coolant temperature is around 30°C, which results in a density ratio of 1.2. To acquire a similar heat transfer condition with real engine, Bi number is matched by choosing MACOR as the plate material, which has a proper thermal conductivity of 1.7 W/m·K. A series of experiments were conducted, with blowing ratio ranges from 0.7 to 2.2. Infrared camera was used to measure the outer surface temperature. Overall cooling effectiveness was found to reach its maximum when blowing ratio is around 1.0. When the coolant continue to increase, the overall cooling effectiveness decreases and the cooling uniformity is also decreasing.

Author(s):  
Kyle R. Vinton ◽  
Travis B. Watson ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

The combined effects of a favorable, mainstream pressure gradient and coolant-to-mainstream density ratio have been investigated. Detailed film cooling effectiveness distributions have been obtained on a flat plate with either cylindrical (θ = 30°) or laidback, fan-shaped holes (θ = 30°, β = γ = 10°) using the pressure sensitive paint (PSP) technique. In a low speed wind tunnel, both non-accelerating and accelerating flows were considered while the density ratio varied from 1–4. In addition, the effect of blowing ratio was considered, with this ratio varying from 0.5 to 1.5. The film produced by the shaped hole outperformed the round hole under the presence of a favorable pressure gradient for all blowing and density ratios. At the lowest blowing ratio, in the absence of freestream acceleration, the round holes outperformed the shaped holes. However, as the blowing ratio increases, the shaped holes prevent lift-off of the coolant and offer enhanced protection. The effectiveness afforded by both the cylindrical and shaped holes, with and without freestream acceleration, increased with density ratio.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Nian Wang ◽  
Mingjie Zhang ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

This study investigates the effects of blowing ratio, density ratio, and spanwise pitch on the flat plate film cooling from two rows of compound angled cylindrical holes. Two arrangements of two-row compound angled cylindrical holes are tested: (a) the first row and the second row are oriented in staggered and same compound angled direction (β = +45 deg for the first row and +45 deg for the second row); (b) the first row and the second row are oriented in inline and opposite direction (β = +45 deg for the first row and −45 deg for the second row). The cooling hole is 4 mm in diameter with an inclined angle of 30 deg. The streamwise row-to-row spacing is fixed at 3d, and the spanwise hole-to-hole (p) is varying from 4d, 6d to 8d for both designs. The film cooling effectiveness measurements were performed in a low-speed wind tunnel in which the turbulence intensity is kept at 6%. There are 36 cases for each design including four blowing ratios (M = 0.5, 1.0, 1.5, and 2.0), three density ratios (DR = 1.0, 1.5, and 2.0), and three hole-to-hole spacing (p/d = 4, 6, and 8). The detailed film cooling effectiveness distributions were obtained by using the steady-state pressure-sensitive paint (PSP) technique. The spanwise-averaged cooling effectiveness are compared over the range of flow parameters. Some interesting observations are discovered including blowing ratio effect strongly depending on geometric design; staggered arrangement of the hole with same orientation does not yield better effectiveness at higher blowing ratio. Currently, film cooling effectiveness correlation of two-row compound angled cylindrical holes is not available, so this study developed the correlations for the inline arrangement of holes with opposing angles and the staggered arrangement of holes with same angles. The results and correlations are expected to provide useful information for the two-row flat plate film cooling analysis.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is measured by pressure sensitive paint (PSP). The inclination angle (θ) of all the holes is 35 deg, and the compound angle (β) is ±45 deg. Effects of the spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, and 2.0d) between the two interacting jets of DJFC holes are studied, while the streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between the two jets of DJFC holes has different effects at different spanwise distances. For a small spanwise distance (p/d = 0), the interaction between the jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid-spanwise distances (p/d = 0.5 and 1.0), the antikidney vortex pair dominates the interaction and pushes both of the jets down, thus leading to better coolant coverage and higher effectiveness. As the spanwise distance becomes larger (p/d ≥ 1.5), the pressing effect almost disappears, and the antikidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At a higher blowing ratio, the interaction between the jets of DJFC holes happens later.


Author(s):  
Yingjie Zheng ◽  
Ibrahim Hassan

This paper presents experimental flow field investigations of a film cooling scheme, referred to as nozzle scheme, on a flat plate using stereo PIV. The nozzle scheme has a cylindrical hole and internal obstacles to change the velocity distribution near the hole exit and hence the jet-mainstream interaction. Counter-rotating vortex pair (CRVP) is known to be one of the detrimental effects that affect the film cooling effectiveness. Previous CFD simulations demonstrated nozzle hole’s capability of reducing CRVP strength and enhancing film cooling effectiveness in comparison with a normal cylindrical hole. The present study examines the nozzle hole flow filed experimentally at blowing ratio ranged from 0.5 to 2.0 and compares with cylindrical hole. The experiments were conducted in a low-speed wind tunnel with a mainstream Reynolds number of 115,000 and the density ratio was 1.0 during all the investigations. The experimental results show that nozzle hole reduces streamwise vorticity of CRVP by an average of 55% at low blowing ratio, and 34%–40% at high blowing ratios. The velocity field and vorticity field of nozzle jet are compared with cylindrical jet. The result reveals that the nozzle jet forms a round bulk in contrast to the kidney shape jet core in cylindrical hole case. In addition, it is found that CRVP strength may not be a primary contributor to the jet lift-off.


Author(s):  
Diganta P. Narzary ◽  
Christopher LeBlanc ◽  
Srinath Ekkad

Film cooling performance of two hole geometries is evaluated on a flat plate surface with steady-state IR (infrared thermography) technique. The base geometry is a simple cylindrical hole design inclined at 30° from the surface with pitch-to-diameter ratio of 3.0. The second geometry is an anti-vortex design where the two side holes, also of the same diameter, branch out from the root at 15° angle. The pitch-to-diameter ratio is 6.0 between the main holes. The mainstream Reynolds number is 3110 based on the coolant hole diameter. Two secondary fluids — air and carbon-dioxide — were used to study the effects of coolant-to-mainstream density ratio (DR = 0.95 and 1.45) on film cooling effectiveness. Several blowing ratios in the range 0.5 –4.0 were investigated independently at the two density ratios. Results indicate significant improvement in effectiveness with anti-vortex holes compared to cylindrical holes at all the blowing ratios studied. At any given blowing ratio, the anti-vortex hole design uses 50% less coolant and provides at least 30–40% higher cooling effectiveness. The use of relatively dense secondary fluid improves effectiveness immediately downstream of the anti-vortex holes but leads to poor performance downstream.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3573
Author(s):  
Soo-In Lee ◽  
Jin-Young Jung ◽  
Yu-Jin Song ◽  
Jae-Su Kwak

In this study, the effect of mainstream velocity on the optimization of a fan-shaped hole on a flat plate was experimentally investigated. The experiment was conducted by changing the forward expansion angle (βfwd), lateral expansion angle (βlat), and metering length ratio (Lm/D) of the film-cooling hole. A total of 13 cases extracted using the Box–Behnken method were considered to examine the effect of the shape parameters of the film-cooling hole under a 90 m/s mainstream velocity condition, and the results were compared with the results derived under a mainstream velocity of 20 m/s. One density ratio (DR = 2.0) and a blowing ratio (M) ranging from 1.0 to 2.5 were considered, and the pressure-sensitive paint (PSP) technique was applied for the film-cooling effectiveness (FCE). As a result of the experiment, the optimized hole showed a 49.3% improvement in the overall averaged FCE compared to the reference hole with DR = 2.0 and M = 2.0. As the blowing ratio increased, the hole exit area tended to increase, and this tendency was the same as that in the 20 m/s mainstream condition.


Author(s):  
Mallikarjuna Rao Pabbisetty ◽  
B. V. S. S. S. Prasad

Abstract A novel mist-assisted air film cooling scheme is proposed by Li and Wang (2006, “Simulation of Film Cooling Enhancement With Mist Injection,” ASME J. Heat Transfer, 128, pp. 509–519) to increase the film cooling effectiveness of a gas turbine cooled vane/blade. This scheme is further investigated experimentally in this article to determine the effect of the blowing ratio. The coolant is made to pass through the film holes on a flat plate mounted in a test facility. Tiny water droplets, characterized by Rosin-Rammler mean diameter of about 36.7 μm measured with a phase Doppler particle analyzer (PDPA) system is introduced into the cooling air. The effectiveness values are evaluated by measuring the plate surface temperature with the infrared (IR) camera. The maximum percentage of the mist-assisted film cooling effectiveness is 26% more than air film cooling effectiveness when 2.1% of mist is added to the air. In addition, the coolant coverage on the plate is found to be much better with mist cooling in both the streamwise and the spanwise directions. The net enhancement due to the mist-assisted air film cooling effectiveness (Δη) decreases with the increasing values of the blowing ratio in the range of 0.55–2.58 at a density ratio of 2.2.


Author(s):  
Lesley M. Wright ◽  
Stephen T. McClain ◽  
Michael D. Clemenson

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film cooling effectiveness is coupled with varying blowing ratio (M = 0.25–2.0), freestream turbulence intensity (Tu = 1%–12.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α = 10°), or simple angle, laidback, fanshaped holes (α = 10°, γ = 10°). In all three cases, the film cooling holes are angled at θ = 35° from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film cooling geometry. The detailed film cooling effectiveness distributions, for cylindrical holes, clearly show the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR = 1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR = 1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film cooling holes, the greatest film cooling effectiveness is obtained at the lower density ratio (DR = 1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.


Author(s):  
Jiaxu Yao ◽  
Jin Xu ◽  
Ke Zhang ◽  
Jiang Lei ◽  
Lesley M. Wright

The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged secondary flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is achieved by Pressure Sensitive Paint (PSP). The inclination angle (θ) of all holes is 35°, and the compound angle (β) is ±45°. Effects of spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, 2.0d) between the two interacting jets of DJFC holes are studied while streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between two jets of DJFC holes has different effects for different spanwise distance. For a small spanwise distance (p/d = 0), the interaction between jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid spanwise distances (p/d = 0.5 and 1.0), the anti-kidney vortex pair dominates the interaction, and pushes both of the jets down, thus leads to better coolant coverage and higher effectiveness. As spanwise distance becomes larger (p/d≥1.5), the pressing effect almost disappears, and the anti-kidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At higher blowing ratio, the interaction between the two jets of DJFC holes moves more downstream.


Sign in / Sign up

Export Citation Format

Share Document