Correlating and Updating Finite Element Models of Different Fidelity Using an Energy-Based Approach

Author(s):  
Alexander Hardenberg ◽  
Arnold Kühhorn ◽  
Maren Fanter

Abstract Building finite element models of complex structures requires the engineer to make various simplifying assumptions. While there exists no unique way of modeling, the resulting model depends to a level on experience and engineering judgment. The inherent model uncertainties can be subdivided into three categories: idealization errors, discretization errors and parameter errors. Understanding the effect of different modeling assumptions and minimizing these uncertainties is key for creating efficient and physical meaningful finite element models. In this paper the effects of different modeling assumptions are analyzed by comparing finite element models of an aero engine turbine casing. Various models of different fidelity are created reaching from simple shell element representations neglecting geometric features like bosses, fixings and holes, to higher fidelity mixed dimensional models using coupled shell and three-dimensional elements. To quantify their impact on the stiffness and mass properties, the different models are correlated with a high-fidelity three-dimensional finite element model using numerical modal data. A novel method is proposed based on the strain and kinetic energy distribution to assess the effect of different modeling assumptions on the model structure. This is done by splitting the discretized model into multiple sections of interest and calculating the deviation of energies within the related splits. The derived strain and kinetic energy deviations are then used in addition to other correlation criteria like the modal assurance criteria or the relative difference in eigenfrequencies to analyze the impact of the different modeling assumptions. Having quantified the differences, the difficulties of error localization using modal data are discussed in the context of the correlation results. Finally, the effectiveness of the derived deviation values are demonstrated by updating a finite element model of an aero engine turbine casing in the presence of structural simplifications using an evolutionary optimization algorithm and comparing the model updating strategy to the standard sensitivity-based updating approach. If the resulting updated model is used to predict structural modifications or untested loading conditions, the updated parameters might lose their physical meaning when altering regions of the model not in error. Therefore, it is important to examine the physical significance of the updated parameters. It is shown, how the energy-based model updating can help to address this problem. All in all, the proposed energy-based approach can be used to compare various modeling strategies in order to build efficient finite element models as well as assist in the choice of parameters for subsequent model updating to validate the numerical model against test data.

Author(s):  
Stefan Lammens ◽  
Marc Brughmans ◽  
Jan Leuridan ◽  
Ward Heylen ◽  
Paul Sas

Abstract This paper presents two applications of the RADSER model updating technique (Lammens et al. (1995) and Larsson (1992)). The RADSER technique updates finite element model parameters by solution of a linearised set of equations that optimise the Reduced Analytical Dynamic Stiffness matrix based on Experimental Receptances. The first application deals with the identification of the dynamic characteristics of rubber mounts. The second application validates a coarse finite element model of a subframe of a Volvo 480.


2012 ◽  
Vol 166-169 ◽  
pp. 2999-3003 ◽  
Author(s):  
Bao Qiang Zhang ◽  
Guo Ping Chen ◽  
Qin Tao Guo

Finite element model updating using incomplete complex modal data for unsymmetrical damping system with genetic algorithm is presented. The genetic algorithm method and finite element model updating based on optimization method using complex modal eigenvalue are introduced. The updating for simulation example about a flexible rotor system which is a typical unsymmetrical damping system is performed using bearing stiffness, bearing damping and diameter moment of inertia parameters. The results show that the maximum error of updated parameters is 0.15% and the objective function of genetic algorithm is 0.0081. The study demonstrates that the finite element model updating method using incomplete complex modal data with genetic algorithm is feasible and effective for unsymmetrical damping system.


Author(s):  
Mohammed Kashama Guzunza ◽  
Ozgur Ozcelik ◽  
Umut Yucel ◽  
Ozgur Girgin

Nowadays it becomes trend in studying of dynamic behavior on complex structure. Model updating is one of the tools developed for verifying accuracy of finite element models. In this paper, method for computing model updating on finite element model and effective the experimental modal analysis of structural systems is developed. The identification method developed in this study is based on time-domain system identification numerical techniques. The case study considered in this work is a 3D printed structure that be modeled as a two-story shear building system with irregular torsion. A preliminary numerical model of the two-story shear building system is developed by using SAP2000 and the experimental modal parameters data are collected in the laboratory buy some test then are modeled by Artemis modal pro. After obtaining the results from numerical modal and experimental modal, it was brought to FEMtools software to improve the match between the dynamic properties of an initial structure and the experimentally estimated modal data for updating. After updating, it’s shown that optimization was done, that some unknown material parameters (such as mass density and young modulus) of materials and/or boundary conditions were optimized by FEMtools Optimization that provides the possibility to perform design optimization on updated finite element models.


2012 ◽  
Vol 58 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Z. Ismail

Abstract A method of detecting honeycombing damage in a reinforced concrete beam using the finite element model updating technique was proposed. A control beam and two finite element models representing different severity of damage were constructed using available software and the defect parameters were updated. Analyses were performed on the finite element models to approximate the modal parameters. A datum and a control finite element model to match the datum test beams with honeycombs were prepared. Results from the finite element model were corrected by updating the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There was no significant loss of stiffness by doubling the volume of the honeycombs.


2005 ◽  
Vol 293-294 ◽  
pp. 297-304
Author(s):  
A.S. Kompalka ◽  
S. Reese

In this contribution we present a validation of an identification procedure and a modeling method with regard to detection, localisation and quantification of damage in a structure. Vibration measurements of an excited experimental structure are used as input for a stochastic subspace system identification algorithm. The identified experimental modal data (eigenvalues and mode shapes) serve to update the underlying finite element model. The experimental setup consists of a cantilever beam and an additional equipment to damage the structure locally and progressively. In contrast to earlier contributions the evolution of damage is quantified in order to estimate the lifetime of the structure.


Sign in / Sign up

Export Citation Format

Share Document