A Machine-Learning Approach to Assess Aircraft Engine System Performance

Author(s):  
Michael T. Tong

Abstract Machine learning and big data have become the most disruptive technologies for organizations to improve workplace efficiency and productivity. This work explored the application of machine learning-based predictive analytics that would enable aircraft engine designers to estimate engine system performance quickly during the conceptual design stage. Supervised machine-learning algorithm was employed to study patterns in an open-source database of one-hundred-eighty-three production and research turbofan engines, and built predictive analytics for use in predicting system performance of new turbofan designs. Specifically, the author developed deep-learning analytics to predict turbofan system weight, using turbofan design parameters as the input. The predictive analytics were trained and deployed in Keras, an open-source neural networks API (application program interface) written in Python, with TensorFlow (an open-source Google machine learning library) serving as the backend engine. The current engine-weight prediction results, together with those for the TSFC (thrust specific fuel consumption) and core-size predictions that were studied previously by the author, show that machine learning-based predictive analytics can be an effective, time-saving tool for assessing aircraft engine system performance (TSFC, weight, and core size) during the conceptual design stage. It would enable expeditious identification of the best engine design amongst several candidates.

2000 ◽  
Author(s):  
Yusheng Chen ◽  
Satyandra K. Gupta ◽  
Shaw Feng

Abstract This paper describes a web-based process/material advisory system that can be used during conceptual design. Given a set of design requirements for a part during conceptual design stage, our system produces process sequences that can meet the design requirements. Quite often during conceptual design stage, design requirements are not precisely defined. Therefore, we allow users to describe design requirements in terms of parameter ranges. Parameter ranges are used to capture uncertainties in design requirements. Our system accounts for uncertainties in design requirements in generating and evaluating process/material combinations. Our system uses a two step algorithm. During the first step, we generate a material/process option tree. This tree represents various process/material options that can be used to meet the given set of design requirements. During the second step, we evaluate various alternative process/material options using a depth first branch and bound algorithm to identify and recommend the least expensive process/material combination to the designer. Our system can be accessed on the World Wide Web using a standard browser. Our system allows designs to consider a wide variety of process/material options during the conceptual design stage and allows them to find the most cost-effective combination. By selecting the process/material combination during the early design stages, designers can ensure that the detailed design is compatible with all of the process constraints for the selected process.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Jian Du ◽  
Yan Li ◽  
Jinlong Ma ◽  
Yan Xiong ◽  
Wenqiang Li

In the conceptual design stage, inspirational sources play an important role in designers’ creative thinking. This paper proposes a retrieval method for semantic-based inspirational sources, which helps designers obtain inspirational images in the conceptual design stage of emotional design. The core principle involves solving the designer’s own deficiencies in associations and limited knowledge, by bridging the “semantic gap” faced by designers when they use Kansei words for inspirational sources. This method can be divided into two aspects: (1) based on the semantic richness of Kansei words, the first part describes how a lexical ontology for Kansei words called KanseiNet is constructed and proposes a spreading activation mechanism based on KanseiNet to complete the semantic expansion of Kansei words; (2) the second part describes how, using existing semantic techniques, relevant design website resources are crawled and analyzed, images’ context descriptions and Kansei evaluations are extracted, and Kansei evaluation index of inspirational images is established. The KanseiNet for Chinese is first constructed, and the Sources of Inspiration Retrieval System for Emotional Design (SIRSED) is developed. An experiment comparing the existing image retrieval systems with SIRSED proved the latter to be a more comprehensive and accurate way for designers to access inspirational sources.


Sign in / Sign up

Export Citation Format

Share Document