Performance Testing of L-PBF Produced Honeycombs Out of IN625

2021 ◽  
Author(s):  
Timo Heitmann ◽  
Ole Geisen ◽  
Lisa Hühn ◽  
Oliver Munz ◽  
Andreas Bardenhagen

Abstract Laser Powder Bed Fusion (L-PBF) enables the production of complex metallic parts. Processes using pulsed wave (PW) laser radiation have been proven to be well suited to build thin-walled honeycomb structures. However, the behavior of these structures under load conditions remains mostly unexplored. The objective of this paper is to characterize L-PBF produced honeycombs by investigating their rub and leakage performance. A pulse modulated process based on previous studies is optimized for productivity and used to build L-PBF test samples out of Inconel 625 (IN625). The honeycomb cell geometry is adjusted for improved printability of the overhanging walls. Repeatable L-PBF production of honeycombs with a wall thickness of about 100 μm is confirmed. Conventionally manufactured honeycomb samples out of sheet metal are tested as reference. The rub experiments cover radial incursion rates of up to 0.5 mm/s and relative velocities of up to 165 ms−1 at incursion depths (ID) between 0.5 and 2.0 mm. Lower incursion forces are observed for the L-PBF components, with a higher degree of abrasion. The leakage tests examine the mass flow rate for pressure ratios between 1.05 and 2.0 at constant gap size and constant back pressure. The L-PBF honeycomb seals show a higher mass flow rate, with the slightly larger cell size and higher surface roughness appearing to be the main influencing factors. Overall, improved rubbing behavior and 10 % higher leakage than the conventional probes demonstrate the applicability of L-PBF for honeycomb sealing systems. Future performance improvements through dedicated L-PBF designs can be expected.

Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Lionel Hirschberg ◽  
Friedrich Bake ◽  
Karsten Knobloch ◽  
Angelo Rudolphi ◽  
Sebastian Kruck ◽  
...  

AbstractMeasurements of sound due to swirl–nozzle interaction are presented. In the experiment a swirl structure was generated by means of unsteady tangential injection into a steady swirl-free flow upstream from a choked convergent–divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream-measured acoustic response. The downstream acoustic pressure was found to remain negative as long as the swirl is maintained and reflections from the open downstream pipe termination do not interfere. The amplitude of this initial acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. When the tangential injection valve was closed, the mass-flow rate through the nozzle increased, resulting in an increase of the downstream acoustic pressure. This increase in signal was compared to the prediction of an empirical quasi-steady model, constructed from steady-state flow measurements. As the opening time of the valve was varied, the signal due to swirl evacuation showed an initial overshoot with respect to quasi-steady behavior, after which it gradually decayed to quasi-steady behavior for tangential injection times long compared to the convection time in the pipe upstream of the nozzle. This demonstrates that the acoustic signal can be used to obtain quantitative information concerning the time dependence of the swirl in the system. This could be useful for understanding the dynamics of flow in engines with swirl-stabilized combustion. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document