flow rate change
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 8 (9) ◽  
pp. 127
Author(s):  
Manivannan Sivaperuman Kalairaj ◽  
Hritwick Banerjee ◽  
Kirthika Senthil Kumar ◽  
Keith Gerard Lopez ◽  
Hongliang Ren

Valves are largely useful for treatment assistance devices, e.g., supporting fluid circulation movement in the human body. However, the valves presently used in biomedical applications still use materials that are rigid, non-compliant, and hard to integrate with human tissues. Here, we propose biologically-inspired, stimuli-responsive valves and evaluate N-Isopropylacrylamide hydrogels-based valve (NPHV) and PAAm-alginate hydrogels-based valve (PAHV) performances with different chemical syntheses for optimizing better valve action. Once heated at 40 ∘C, the NPHV outperforms the PAHV in annular actuation (NPHV: 1.93 mm displacement in 4 min; PAHV: 0.8 mm displacement in 30 min). In contrast, the PAHV exhibits a flow rate change of up to 20%, and a payload of 100% when the object is at 100 ∘C. The PAHV demonstrated a completely soft, stretchable circular gripper with a high load-to-weight ratio for diversified applications. These valves are fabricated with a simple one-pot method that, once further optimized, can offer transdisciplinary applications.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2555
Author(s):  
Francis Delisle ◽  
Ali Arkamose Assani

The objective of this study is to use two hydrological indices (coefficients of variation and immoderation) to analyze the impacts of dam management methods on seasonal daily flow rate change downstream of three dams: Manouane (diversion-type management method), Ouareau (natural-type management method) and Matawin (inversion-type management method). The results show that this change is far greater downstream of the Matawin dam (characterized by an inversion-type management method) than downstream of the two other dams. Moreover, downstream of the Matawin dam, this daily flow rate change increases significantly over time, while decreasing downstream of the two other dams and in natural rivers. Lastly, this change is better correlated with climate downstream of the Ouareau dam than downstream of the two other dams. It is positively correlated with winter and spring temperatures as well as summer and fall rain. Contrary commonly accepted hypothesis, this study shows that the impacts of dams generally result in an increase of the seasonal flow rate change in Quebec.


2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Lionel Hirschberg ◽  
Friedrich Bake ◽  
Karsten Knobloch ◽  
Angelo Rudolphi ◽  
Sebastian Kruck ◽  
...  

AbstractMeasurements of sound due to swirl–nozzle interaction are presented. In the experiment a swirl structure was generated by means of unsteady tangential injection into a steady swirl-free flow upstream from a choked convergent–divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream-measured acoustic response. The downstream acoustic pressure was found to remain negative as long as the swirl is maintained and reflections from the open downstream pipe termination do not interfere. The amplitude of this initial acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. When the tangential injection valve was closed, the mass-flow rate through the nozzle increased, resulting in an increase of the downstream acoustic pressure. This increase in signal was compared to the prediction of an empirical quasi-steady model, constructed from steady-state flow measurements. As the opening time of the valve was varied, the signal due to swirl evacuation showed an initial overshoot with respect to quasi-steady behavior, after which it gradually decayed to quasi-steady behavior for tangential injection times long compared to the convection time in the pipe upstream of the nozzle. This demonstrates that the acoustic signal can be used to obtain quantitative information concerning the time dependence of the swirl in the system. This could be useful for understanding the dynamics of flow in engines with swirl-stabilized combustion. Graphic abstract


Author(s):  
Shitakha Felistus ◽  
Kimathi George ◽  
Songa Caroline

Aims / Objectives: To find the lifetime of the bubble by plotting the rate of mass flow rate change against time. Place and Duration of Study: Department of Mathematics and Applied Science, Catholic University of Eastern Africa, Nairobi, Kenya, between February 2020 and March 2021. Methodology: The maximum lifetime of the bubble is assumed to match the time when the mass flow rate change is zero. The study also assumes the velocity of flow rate and other fluid properties at the interface of fuel-surfactant constant other than Re. Re is varied from 0.01 to 100. Results: The graphical plots show that for Re ! 1, and Re " 1, the stability depends on diffusive viscosity and linearized convection, respectively. The simulation suggested that the bubble formed at the fuel-surfactant interface may have Re “ 1 and its lifetime is tb » 0.28. Conclusion: The lifetime of surfactant depends on Re while assuming other interface properties constant. Recommendation: Future studies in the area need to consider the effect of variation in temperature, velocity, and Reynolds number in determining the lifetime of a bubble in the thin foam of the surfactant-fuel interface.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingmin Hou ◽  
Daheng Yang ◽  
Xiaoyan Li ◽  
Guanghua Xiao ◽  
Siu Chun Michael Ho

The leakage rate is an essential parameter for the risk assessment and failure analysis of natural gas pipelines. The leakage rate of a natural gas pipeline should be calculated quickly and accurately to minimize consequences. First, in this study, models to estimate the leakage rate of natural gas pipelines are reclassified, and the theoretical range of application for each model is also analysed. Second, the impact of the leakage on the flow rate upstream of the leak point is considered, and the method of successive approximation is used to realize this feedback effect of flow rate change. Then, a modified hole-pipe model is developed to calculate the natural gas leakage rate in this paper. Compared with the leakage rate calculated by the hole-pipe model, the leakage rate calculated by the modified hole-pipe model is smaller and closer to the actual leakage rate due to the consideration of the feedback effect of the flow rate change. Finally, the leakage rate curves of the hole-pipe model and the modified hole-pipe model under different d/D conditions are obtained through simulation. The simulation results show that the modified hole-pipe model is able to calculate the leakage rate of any leak aperture, such as the hole-pipe model, and also at a higher accuracy level than the hole-pipe model.


2020 ◽  
Vol 3 (1) ◽  
pp. 42-49
Author(s):  
Bhesh Kumar Karki ◽  
Iswar Man Amatya

This research was carried out to compare turbidity removal efficiency of anthracite up flow roughing filter (RF) model to gravel RF model at different flow rates. Two identical filter columns with (230*230*1570) mm3 in internal dimensions were operated at same time. Same grain size (2 - 4.75) and (4.75 - 9.5) mm were used in gravel model and anthracite model. All the sizes were achieved by properly sieving through standard sieve sizes (2, 4.75, 9.5, 12.5 and 25 mm). The study involved measuring turbidity every 2 hours and head loss once a day. Filter models were operated around 200 NTU influent turbidity until maximum allowable head loss was reached. Three sets of experiments were carried at filtration rate of .0.5 to 1.5 m/h. Anthracite model was 2.07% more efficient in terms of turbidity removal. Increasing filtration rate from 0.5 to 1.5 m/h, the effluent turbidity in gravel model increased from 24.44 to 33.52 NTU whereas that in anthracite model increased from 21.48 to 28.02 NTU and removal efficiency in anthracite model decreased from 89 to 86% while in gravel model decreased from 88 to 84%. Thus, it can be concluded that anthracite model was highly significant to removal turbidity and less affected by the flow rate change in case of efficiency. Thus, this cost-effective method can be used in context of Nepal as well.


2019 ◽  
Vol 20 (2) ◽  
pp. 207 ◽  
Author(s):  
Chongpei Liu ◽  
Bin Zhao ◽  
Wanyou Li ◽  
Xiqun Lu

The bushing profiles have important effects on the performance of journal bearing. In this article, the effects of plain profile, double conical profile, and double parabolic profile on the elastohydrodynamic lubrication of the journal bearing under steady operating conditions are investigated. The journal misalignment and asperity contact between journal and bushing surface are considered, while the modification of the bushing profiles due to running-in is neglected. Finite element method is used for the elastic deformation of bushing surface, while the numerical solution is established by using finite difference method and overrelaxation iterative method. The numerical results reveal that the double parabolic profile with appropriate size can significantly increase the minimum film thickness and reduce the asperity contact pressure and friction, while the maximum film pressure, load-carrying capacity, and leakage flow rate change slightly under steady operating conditions. This study may help to reduce the edge wear and prolong the service life of the journal bearing.


Sign in / Sign up

Export Citation Format

Share Document